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ABSTRACT 

Low voltage, high speed and high linearity are three different aspects of the analog 

circuit performance that designers are trying to achieve. In this dissertation, three design 

projects targeting these different performance optimizations are introduced. 

The first work is a design of a low voltage operational amplifier. In this work, a 

threshold voltage tuning technique for low voltage CMOS analog circuit design is presented. 

A 750mV two-stage operational amplifier using this technique was designed in a standard 

0.5|im 5V CMOS process with Vtp = -0.9V and Vtn = 0.8V. The active area is 560nm 

x760nm. It exhibits a 62dB DC gain and consumes 38|iW of power. It works with supply 

voltages that range from 0.75V to IV. Compared to its 5V counterpart consuming the same 

amount of current, it maintains nearly the same gain bandwidth product of 3.7MHz when 

driving 15pF load. This op amp is the FIRST strong inversion op amp that works at a supply 

voltage below the threshold voltage. 

The second is a design of a high speed phase-locked loop for data recovery. A new 

non-sequential linear phase detector is introduced in this work. Most of the existing phase 

detectors for data recovery are based on state-machines. The performance of these structures 

deteriorates rapidly at higher frequencies because of the inadequate settling performance of 

the flip-flop used to form the state machine. The new phase detector has a speed advantage 

over the state-machine based designs because it is simple and easy to implement in CMOS 

technology. Using this phase detector, a PLL was designed in a 0.25|im CMOS process with 

an active area of 400|»im x290fim. Experimental results show it successfully locks to a 

2.1Gbit/s pseudo-random data sequence at 2.3V. It is believed that the architecture is the 

fastest that has been introduced for data recovery applications. 

The third work introduces the design of a highly-linear variable gain amplifier. It 

achieves high linearity with third harmonic distortion better than -60dB@Vopp=lV at 

160MHz in a 0.25p.m CMOS process. It has a precise gain step of 6.02dB that is controlled 
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digitally. The linearity performance is achieved with a linearized open loop amplifier 

configuration. Similar performance can only be achieved using feedback configuration 

before. 
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CHAPTER 1 

INTRODUCTION 

It was in the early 1980's that many experts predicted the demise of analog circuits 

because the emerging digital signal processing (DSP) algorithms were becoming more and 

more powerful. It was conjectured that all processing of the signal could be performed 

eventually more efficiently in digital domain. Yet the reality is, while much signal processing 

has indeed shifted to digital, our world is still an "analog" world and the demand for analog 

and mixed-signal circuits continues to grow. Most DSP relies heavily on interfaces to the 

analog world. The need for analog circuits in modern mixed-signal VLSI chips for 

multimedia, perception, control, instrumentation, medical electronics and 

telecommunications is very high. Analog and mixed-signal circuits are fundamentally 

necessary in many modern electronic systems. 

For almost two decades, the dominant semiconductor technology has been shifted 

from bipolar to CMOS. This replacement happened first in digital market. Compared to 

bipolar or GaAs technology, static MOSFET logic dissipates power only when devices are in 

transition. It requires fewer devices to build comparable logic gates. Furthermore, the gate 

length can be shrunk much faster which results in higher speed, smaller die size and reduced 

power dissipation. The low fabrication cost and the possibility of integrating both analog and 

digital circuits on the same die make CMOS technology the technology of both choice and 

necessity for many applications. Nevertheless, bipolar and GaAs technology still find niche 

applications in high performance analog design because they have higher speed and lower 

noise than what can usually be achieved in CMOS technology. 

All the technical contents in this dissertation is based on CMOS technology. 
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In modern CMOS analog design, engineers are facing all kinds of problems when 

they are designing high performance analog circuits. One of the most important problems is 

the power dissipation. With the shrinking channel length, more and more transistors are 

squeezed into a small die while the operating frequency is getting higher and higher. This 

trend results in a much higher power density on the chip which requires a way to cool it 

down. Low voltage design is a promising solution. Furthermore, the popularity of hand-held 

devices and mobile applications makes it even more attractive to develop low voltage circuits 

because they can work at a single battery cell and allow the hand-held device to operate much 

longer. Presented in Chapter 2 of this dissertation is a design of a 750mV operational 

amplifier (op amp). This op amp is the FIRST implementation of strong inversion op amp 

that works at a supply voltage below the threshold voltage in a standard CMOS process. It 

was implemented using a threshold voltage tuning scheme. This low voltage design technique 

can also be easily accommodated into the design of other low voltage analog circuits. 

In the internet era, people always want to be connected in a higher bandwidth so they 

can communicate at higher speeds. The speed of the Ethernet rapidly evolved from 10Mb/s, 

lOOMb/s, lGb/s and now even to lOGb/s. It is a never-ending challenge in integrated circuit 

design to continue pushing the speed/performance envelope. In any modern communication 

system, no matter whether it be wireline or wireless, the phase-locked loop (PLL) plays a 

vital role in determining the speed of the communications. In Chapter 3, a design of a high 

speed PLL for data recovery will be discussed. It employs a new non-sequential linear phase 

detector to achieve high speed operation. Compared to most of the existing full-rate phase 

detector structures, the new phase detector has a speed advantage because it is simple and 

easy to implement in CMOS technology. 

Related to the design of the PLL, a short discussion on transient bit error rate (BER) 

analysis of data recovery systems using jitter models is given in Chapter 4. It co-relates the 
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acquisition behavior of the PLL to the BER of the recovered data which will be greatly 

helpful in system level design of the data recovery system. 

Another problem most analog designers need to deal with frequently is the linearity 

performance of the circuits. Transistors are not perfect. Their input/output relationships are 

not linear. Short-channel effects in deep sub-micron process make the linearity performance 

even worse. There are certain applications in which the linearity of the amplifier is the key 

performance characteristic that determines the performance of the whole system. In Chapter 

5, a high precision, highly-linear high speed variable gain amplifier (VGA) will be 

introduced. It has a precise gain step of 2 (6.02dB) that is controlled digitally. It has a third 

harmonic distortion better than -60dB@Vopp=lV for 160MHz inputs. The linearity 

performance was achieved using an open loop amplifier structure. Similar linearity 

performance has only been achieved previously by using feedback structures. 

To have a better understanding of the linearity in open loop amplifiers and feedback 

amplifiers, an analysis of the effects of open loop nonlinearity on linearity of feedback 

amplifiers will be discussed in Chapter 6. The nonlinearity in feedback amplifiers is 

investigated quantitatively from several different aspects. 
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CHAPTER 2 

A FULLY-INTEGRATED 750mV CMOS OPERATIONAL AMPLIFIER 

2.1 Motivation 

The design of low voltage low power CMOS analog circuits has become a subject of 

considerable interest in recent years. There are several driving forces to attract analog design 

engineers to persistently investigate the design of lower supply circuits. 

The first reason is the constantly shrinking feature size of the modern CMOS 

processes. As the minimum channel length is approaching the 0.09|im level in the year of 

2002, the thickness of the device gate oxide is becoming thinner. Since the gate oxide 

thickness is so small, the gate of the transistors can't withstand high voltages because of the 

high electric field strength in the gate oxide that is created by such voltage levels. In order to 

avoid gate breakdown and ensure device reliability, the power supply of the circuits has to be 

scaled down. With the shrinking channel length, the device threshold voltages are also 

decreasing. This threshold voltage change makes it possible to have lower supply voltages. 

Figure 2.1 shows an illustration of approximate relationships among minimum channel 

length, power supply voltages and the threshold voltages. 

The need for low power supply voltage happened first in the digital design area. This 

is because digital circuits are much more compact and dense than most analog circuits. With 

more and more devices being integrated into a small die, power density has become a big 

problem and excessive power density will cause a part of the die to overheat. 

Because there is almost no power dissipation through the digital circuits if there is no 

switching, most of the power consumed by digital circuits is dynamic power which is given 

by 

p, (2.1) 
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supply voltages 

threshold voltages 

jIMOS process 

5m - M 0.5// 0.35A 0.25// 0.18// 0.13// feature sizes 

Figure 2.1 Migration of the CMOS process feature sizes, power supply 

voltages and threshold voltages 

where Cload is loading capacitance, / is the operating frequency and VDD is the supply 

voltage. We can see the one was to alleviate the power dissipation problem is to lower the 

supply voltage. If the load capacitance and speed remain constant, the total power 

consumption will be a quarter of what it was before if the supply voltage can be halved. 

More recently, with the popularity of battery-powered devices for portable 

applications, low voltage design has become an even more attractive topic. A lot of people 

own cell phones, laptops and PDAs. One of the key performances to evaluate them is by 

battery life. Battery life strongly depends on the power dissipation of the chips. In a word, the 

longing for lower power consumption has always been the reason for low voltage design and 

this pursuit is going to continue for the foreseeable future. 

Low voltage operation is always being paralleled with the scaling of threshold 

voltages. This trend makes it possible for digital circuits power supply to be decreased from 

5V to about 1.5V nowadays. While it is relatively easy to accommodate the low supply 

voltage for digital circuits, these decreasing supply voltages often have a detrimental effect 
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on analog components in these systems. Moreover, the threshold voltage will not decrease 

significantly below what we already have now. Since many portable products operate from 

alkaline or rechargeable batteries, the operating supply voltage for these systems is migrating 

down to 0.9 V for a single battery cell. Therefore, circuits design techniques need to be 

improved in order to allow existing CMOS analog circuits to operate at a lower supply 

comparable to the threshold voltage while still maintaining key performance parameters at 

the levels achievable at higher supply voltages. 

2.2 Low Voltage Design Techniques 

The major issues in the design of low voltage analog circuits are: 

1. The threshold voltage and saturation voltage (%&„,) do not scale down linearly 

with power supply nor with smaller size technologies. 

2. The designers can not use conventional cascode structures and other conventional 

design methodologies to maintain the performance for low voltage circuits. 

As a fundamental building block in analog processing, the operational amplifier is a 

good test bed for developing low voltage design techniques. Quite some work has been done 

on CMOS low voltage analog design techniques. They can be categorized into three design 

strategies as discussed in the following three subsections. 

2.2.1 Low Voltage Circuit Structures with Conventional Transistor Operation 

The first strategy is to employ new circuit structures that use standard transistors to 

achieve low voltage operation without sacrificing much performance [2.2] [2.3] [2.4] [2.5] 

[2.6] [2.7] [2.8] [2.9]. Analog designers have invented a lot of methods to boost the 

performance of the circuits. Although these structures helped with supply migrates from 15V 

or higher down to the 1.5V range, most of them are proving not suitable for very low voltage 

design. 
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Examples of design approaches in this category include the use of rail-to-rail constant 

gm complementary differential pair input stages [2.2] [2.3] [2.6] [2.9], dynamic biasing 

circuits [2.4], regulated-cascode transistors [2.2] [2.7] and low voltage transconductance 

stages [2.5] [2.8]. 

For op amps that will be used in the non-inverting configuration, a large input 

common mode voltage swing is required. Especially for a voltage follower which usually 

works as an output buffer, we need a rail-to-rail input common mode voltage range. For this 

reason, the rail-to-rail complementary differential pair input stage is quite popular in realizing 

low voltage op amps. Either P-input or N-input differential pairs are generally used as the 

input stage for op amps. Shown in Figure 2.2 is the typical input common mode voltage 

ranges for both the NMOS pair and the PMOS pair. For the NMOS input pair, the common 

mode input range is up to VM, but its lower end is limited by the VGS of the input pair and the 

Ktiar °f the current source. For the PMOS input pair, the common mode input range is down 

to - Va, but its higher end is limited by the VGS of the input pair and the V(isat of the current 

source. Neither of them has a rail-to-rail common mode input range. The standard approach 

for achieving rail-to-rail inputs is to connect the NMOS pair and PMOS pair in parallel so 

that it has rail-to-rail input common mode range shown in Figure 2.3. We can see the 

minimum supply voltage for this structure is 

Vtup — -KirrtZ ^G5..Vfl/2 3/4 (2.2) 

i-e. Vsup — 4Vds<u +V,n+Vlp (2.3) 

The required supply voltage for this structure is quite low. Almost all rail-to-rail input 

stages used in [2.2] [2.3] [2.6] [2.9] are similar to that of figure 2.3 except for some 

variations in performance enhancement methods to alleviate some limitations in this structure 

such as transconductance variations because of the overlapping of the common mode range 

for the NMOS pair and the PMOS pair. Similar methodologies can also be used to develop 

low voltage rail-to-rail output stages [2.3]. These will not be discussed here. 
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Another low voltage design technique is to use so called "self-cascode" or "regulated-

cascode" structures. We all know cascoding in "normal" voltage analog circuits will usually 

enhance the performance by increasing the output impedance. But it is not useful in low 

voltage design because of its requirements for higher voltage headroom. To achieve a similar 

performance as the cascoding, the "self-cascode" scheme has been proposed for low voltage 

operation as shown in Figure 2.4. 

t m> 1 

Figure 2.4 Self-cascode structure 

This self-cascode structure consists of two NMOS transistors. It performs 

equivalently to a simple NMOS transistor with a much larger effective channel length [2.15] 

(thus higher output impedance). In practice, the optimal W/L ratio of M2 should be larger 

than that of Ml, i.e. m>l. The lower transistor Ml is equivalent to a resistor, but this resistor 

is input dependent. The effective transconductance of the self-cascode transistor is 

approximately equal to the transconctance of Ml [2.15]. 

In the self-cascode structure, transistor Ml always operates in linear region while the 

top transistor operates in either saturation or the linear region. The voltage between the 

source and drain terminal of Ml is so small that there is no discernable difference in both 

the self-cascode and simple transistors. Thus, the self-cascode structure can be used in low 
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voltage applications. Some other similar structures were also proposed to have an enhanced 

gain but not requiring additional voltage overhead. 

While all the examples [2.2] [2.3] [2.4] [2.5] [2.6] [2.7] [2.8] [2.9] in this class were 

able to achieve comparable performance to traditional high voltage designs, they all failed to 

operate at a very low voltages. Usually, the minimum power supply required for this class of 

circuits is higher than 1.5 V}. Table 2.1 summarizes the techniques and the supply voltages of 

the low voltage op amp designs. The lowest supply voltage they achieved was IV supply in a 

CMOS process with threshold voltages of Vm = 0.6V Vlp = -0.8V. 

2.2.2 Bulk-driven Transistors 

The second strategy of low voltage design is to use bulk-driven transistors. This 

technique is suited for standard CMOS processes; nevertheless, only one kind of transistor 

can be used for bulk-driving in single-well processes, i.e. only P-channel devices can be bulk-

driven in an N-well process. 

The reason that bulk-driven transistor can be used for low voltage design is because 

the transistor exhibits some depletion mode characteristics when it is bulk-source driven, i.e. 

it conducts current at negative, zero or small forward bulk-source voltages. 

Table 2.1 Low-voltage op amp designs using new circuits architectures 
Supply voltage Process Threshold voltage Techniques 

Coban [2.2] 2 2|im CMOS 0.9/0.7 R-t-R input stage 

Ferri [2.3] 1.3 0.7nm CMOS 0.7 R-t-R input/output stage 

Giustolisi [2.4] 1.2 L2*xmCMOS 0.75 Dynamic biasing 

Lee [2.5] 1 l.2|im CMOS 0.6Z-0.8 Low voltage g m  stage 

Lu [2.7] 1.3 0.8|im CMOS 0.72/-0.77 Regulated cascode 

Palmisano [2.8] 13 1,2gm CMOS 0.8 Low voltage g m  stage 

Hogervorst [2.9] 3 Custom CMOS 0.63/0.77 R-t-R input stage 
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One major disadvantage of a bulk-driven MOSFET is that it has a substantially 

smaller gm compared to a conventional gate-driven MOSFET [2.15]. For a conventional 

gate-driven MOSFET, the frequency response potential is described by its transitional 

frequency, /r, 

fr. gate-driven ~ (2-4) 
gs 

For the bulk-driven MOSFET, fT is given by 

f Smb ^l8m O c\ 

2ff(Ctl +CM) 2®(C11+C„) 

where rj is the ratio of gmb to gm and typically has a value in the range of 0.2 to 0.4. 

For typical strong inversion MOSFET operation, the following approximation stands, 

JtJiulk-driven ^ g fT .gate-driven (2.6) 

This will result in a lower gain bandwidth (GBW) and thus a more limited frequency 

response [2.15]. 

Examples of circuits included in this category include those of [2.10] [2.11] and 

[2.13]. The performance of these circuits is summarized in Table 2.2. Although the supply 

voltages are nominally lower than those of the circuits of Table 2.1, they can't work very 

close to a supply that is comparable to the threshold voltage. The best of them is that of 

[2.13]. It was able to work with a 0.9V supply with the help of both bulk-driven transistors 

and depletion-mode transistors which is not available in standard CMOS processes. 

Table 2.2 Low-voltage op amp designs using Bulk-driven devices 

Supply voltage Process Threshold voltage Note 

Allen [2.10] 1 2|0.m CMOS 0.7-0.8 

Lasanen [2.11] 1 0.35|im CMOS 0.5/-0.65 

Stockstad 

[2.13] 

0.9 Custom CMOS N/A Used depletion 

transistors 
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2.2.3 Process-dependent Transistors 

A third strategy is to use special devices such as depletion-mode [2.13] and floating-

gate transistors [2.12] [2.14]. Compared to normal single-gate transistor, the floating-gate 

transistor can be programmed to have a smaller effective threshold voltage which makes it 

suitable for low voltage operations. Depletion-mode transistor conducts current even at 

negative gate-source voltages. 

The floating-gate device requires a critical very thin oxide to support the floating gate 

and this option is both costly and unavailable in most basic digital processes. The depletion-

mode transistor is rarely available in standard CMOS processes. In [2.12], the authors 

presented a 1.2V op amp with a 0.85V threshold voltage process and floating-gate devices. 

With the help of both bulk-driven and depletion-mode transistors, the op amp given in [2.12] 

was able to work at 0.9V (the authors didn't mention the Vt value) with inferior performance 

compared to strong inversion op amps. 

2.3 Threshold voltage tuning scheme 

High threshold voltages are fundamentally limiting our ability to realize low voltage 

high performance analog and mixed-signal circuits. If the effective threshold voltage could be 

reduced using circuit design techniques, very low voltage analog circuits could be 

implemented. A threshold voltage tuning technique [2.16] [2.17] was introduced that allows 

strong inversion operation at supply voltages below the threshold voltage in any standard 

CMOS process. This technique is illustrated in Figure 2.5. Virtual transistors with lower 

effective threshold voltages are created by adding voltage sources in series with their gates. 

The effective threshold voltages for the virtual transistors are V'n = Vm —Vdcn for the NMOS 

devices and V'p = Vtp +Vdcp for the PMOS devices. Both of them can be controlled by the bias 

voltage Vdcn and Vdcp. Assuming an ideal voltage source, the performance of the virtual 

transistor will be exactly the same as a normal transistor except it will have a lower effective 
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threshold voltage. Circuits built with virtual transistors can be designed to consume less 

power than those built with standard transistors because the supply voltage can be 

significantly reduced. 

Figure 2.6 shows one method of implementation of the voltage sources Vdcn and Vdcp 

for both NMOS and PMOS. It employs a switch capacitor scheme. The idea is to keep a 

constant voltage across the capacitors. Due to leakage current, the capacitors need to be 

recharged periodically. In order to accomplish this, a bias voltage Vdc charges the capacitor 

C[ when is asserted. When <), is asserted, Cx is connected to the signal path and shares its 

charge with C2. Because the current leakage is very small, the frequency of <j>x and can 

and should be very low in order to reduce the noise injected into the signal path during 

switching. To ensure correct operation, 0, and 02 must be non-overlapping. The use of C, is 

to provide a constantly-connected signal path. 

standard 

transistors 

3 

virtual 

transistors 

izh 
4 

V  =  V  - V A  tn tn den 

=»H 
dcp r tp Vtp Vtp + Vdcp 

Figure 2.5 Threshold voltage tuning scheme 
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Bias Voltage ,̂ v 

r 
Bias Voltage v 

I OUT 

T 
Figure 2.6 Threshold voltage tuning implementation 

The required charging rate for the switched capacitors is determined by the leakage 

current. Leakage current is strongly process-dependent. For deep submicron process, the 

inherently larger leakage currents require a reduction in charging period. 

2.4 Two-stage Op Amp 

To demonstrate this technique, we designed a low voltage two-stage op amp. Its basic 

structure is shown in Figure 2.7. The first stage is a NMOS input differential pair with current 

mirror load. The second stage is a common-source amplifier. Miller capacitor Cc is used to 

compensate the op amp to ensure an acceptable phase margin. Resistor Rc is used to cancel 

the right-half-plane zero that is introduced by Cc. 

Some well-known key performances of this op amp are given by 

Slew Rate: SR = 
Cc 

(2.7) 
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DC gain: 8 m 4.5 8 mi (2.8) 
Sdsi,5 Sdsé.l 8dsli 8ds3 

Gain bandwidth product: GBW=- (2.9) 

The low voltage op amp structure is based on this two stage op amp using the 

threshold voltage tuning scheme as shown in Figure 2.8. The transistors that have the same 

gate connection can share a single voltage source. 

In order to compare the performance of the normal and the low voltage op amps, we 

designed two op amps with exactly the same structure, the same transistor sizing and the 

same quiescent current levels with the only distinction being a large supply voltage of 5V for 

one amplifier and a low supply voltage of 750mW for the other structure. They were 

fabricated on the same die as well. The transistor sizes for both op amps are given in Table 

2.3. Our goal was to maintain the same GBW for the low voltage op amp as for the 5V op 

amp with the same structure and same current levels. 

<b 

M 6 | 1 Ml 1 Vt 8 

OUT 

«pi  ̂ 1  ̂ -I M 

Zb 
Figure 2.7 Two-stage op amp 
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Figure 2.8 Low voltage op amp core 

Table 2.3 Transistor sizes of the op amp core 

W/L ratio W/L ratio W/L ratio 

M1/M2 120M/1.8H M3 180n/1.8n M4/M5 84p/1.8|i 

M6/M7 60n/1.8n M8 180M/1.8H Current 50nA (total, simulation) 

2.5 Auxiliary Circuits 

In order to realize the switch capacitor voltage sources, a set of supporting circuits are 

needed. Shown in Figure 2.9 is the block diagram of the auxiliary circuits and the op amp 

core. The oscillator generates a clock and the clock is then divided by a D flip flop (DFF) 

based frequency divider with a ratio of 16:1. To reduce the switching noise, a pulse generator 

is used to generate a short pulse over a long period for charging Ct. Clocks 0, and 0Z are 

generated by a non-overlapping clock generator. The switches used in our design are all 

NMOS transistors. In order to fully turn on the switches, a clock booster circuit is designed to 
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boost the high voltage level of the clocks to about 2VDD to 3VDD. Finally, a very simple 

bias voltage generator is designed to provide the bias voltage Vdc to charge the capacitors. 

Nominally, this voltage is about 300mV below the threshold voltage, which gives the virtual 

transistor a 300mV effective threshold voltage. Each part of the auxiliary circuits will now be 

discussed. 

Preset 

Oscfflator | Voltage Source 

Frequency 
Divider 
T 

Pulse 
generator 

Bias 
voltage 

generator 

Non-Overlapping 
CLK generator 

"HOE 
"CLkP5 

booster 

Switched 
Capacitor 

Low voltage 
Op Amp 

Figure 2.9 Block diagram of the auxiliary circuits with the op amp core 

2.5.1 Oscillator 

The oscillator of Figure 2.10 was used in our design. It is a 7-stage ring oscillator 

biased with a power supply of VDD. Each stage in the ring oscillator is just an inverter. The 

reason for using this simple structure is that the jitter and timing of the switching clocks are 

not a concern at all. This structure was designed to have all stages operating in the sub­

threshold or weak inversion region. 

VDD 

5/0.6 7 stages 

IN 
OUT 

6/0.6 
clock 

Figure 2.10 Schematic of the oscillator 
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2.5.2 Frequency Divider 

The frequency divider is shown in Figure 2.11. It is implemented by 4 stages of DFF-

type, divide-by-two circuit. The dividing ratio is 16:1. The use of frequency divider is to 

lower the clock frequency more effectively than adding more delay stages in the oscillator. 

Output 

CLK CLK CLK 

output 

from  ̂

oscillatr 
CLK 

Figure 2.11 Schematic of the frequency divider 

The schematic of the DFF is shown in Figure 2.12. It is a dynamic DFF circuits 

without feedback. Whenever there is rising edge on "CLK", the outputs will follow the input 

level at "D" and be able to hold this value even if "CLK" goes low or the level of "D" 

changes. It is a simple and highly efficient circuit and sufficient to implement the frequency 

divider. 

VDD 

36/0.6 Ml, 12/0.6 12/0-6 24/0.6 

M6 M8 

CLK 
M2,4.2/0.6 

Hpp-lp17 

4.8/0.6 

M9 

M3,4.2/0.6 6/0.6 6/0.6 

Figure 2.12 Schematic of the D flip flop used in frequency divider 
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Figure 2.14 Schematic of the D flip flop used in pulse generator 

The schematic of the DFF used in the pulse generator is shown in Figure 2.14. It is a 

master-slave type flip flop with SET and RESET. This structure is the same as that used in 

realizing DFFs in 74 series standard logic circuit families. 

2.5.4 Non-overlapping Clock Generator 

The clocks $ and </>z of figure 2.6 must be non-overlapping to ensure the correct 

charging operation, that is, 0, has to be off before <f>z can be on at the beginning of charging 

and 02 has to be off before <f>v can be on at the end of charging. 

A non-overlapping clock generator introduced in [2.18] was used in our design. This 

is shown in Figure 2.15. The delay blocks are used to ensure that the clocks remain non-

overlapping. They are implemented by series of inverters (2 inverters in delay 1,4 inverters in 

delay2). This non-overlapping clock generator is widely used in the design of switched 

capacitor circuits. 
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V 
CLK_N 

CLK_P 

Figure 2.15 Schematic of the non-overlapping clock generator 

Shown in Figure 2.16(a) is a timing diagram of the outputs of frequency divider, pulse 

generator and the non-overlapping clock generator. It gives a better understanding how those 

signals are related. Shown in Figure 2.16(b) are the simulation waveforms corresponding to 

Figure 2.16(a). 

frequency divider output 

_j 1 pulse generator output | 1 | |_ 

n_ t>2_ri 

#>i ™i r i r 

Non-overlapping clock generator outputs 

(a) 

Z»l* *4>* ««3w t Zûm r » a*m 

(b) 

Figure 2.16 (a) Timing relationships of the clocks; (b) corresponding simulation results 
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2.5.5 Clock Booster Circuits 

A stage of clock booster circuit is shown in Figure 2.17(a). When the input is low, M3 

and M5 are on (sub-threshold or weak inversion) and M4 is off. Capacitor C is charged to 

VDD and the output is zero. When the input becomes high, M3, M5 are off, M4 is on. The 

voltage level at the gate of M3 becomes VDD and the voltage level at the drain of M3 

becomes 2VDD. The voltage at the drain of M3 is transferred through M4 to the output. 

When the voltage at the drain of M3 becomes higher than VDD, however, the charge will 

start to leak through M3 because the drain voltage of M3 becomes higher than its source 

voltage. For this reason, the size of M3 is very small in our design. Although the leakage is 

small, in reality, the swing of the clock can only be boosted to about 1.5VDD-1.8VDD in one 

stage. In our design as shown in figure 2.17(b), two stages are used to boost the high clock 

level from VDD to about 2VDD to 3 VDD. Shown in Figure 2.17(c) is the simulation results 

of the clock booster. Upper two waveforms are non-overlapping clock inputs. The bottom 

two waveforms are boosted non-overlapping outputs. 

2.5.6 Bias Voltage Generator 

The bias voltage generator we used is shown in Figure 2.18. It is a very simple 

structure. The output voltage is well defined, and the bias voltage generator can provide 

sufficient current under very low supply voltages. A relatively high-value resistor is used to 

alleviate the dependency of the output to the changes of the power supply, that is, the output 

should keep relatively constant without tracking the change of the VDD, which gives a 

relatively constant effective threshold voltage for the virtual transistors. Only two of bias 

voltage generators are required to supply the current for charging voltage sources for NMOS 

and PMOS. The sizing of the transistors is determined by both the output voltage and the 

charging current requirements. 
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Figure 2.17 (a) one stage of clock booster; (b) actual implementation of the clock booster; 

(c) simulation results of the clock booster 
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12.6/0.9 for Vcp 

VSS 

Figure 2.18 Schematic of the bias voltage generator 

2.6 Other Design Issues 

In our design, the projected process is the AMI 0.5|im CMOS process with a 

threshold voltage about 0.8V. The maximum gate-source voltage in the circuits is below 1.6V 

which is much smaller than the nominal 5V supply for the process. If it were used for a 

design in, for example, a 0.13|im process with threshold voltage of 0.4V, then the maximum 

gate-source voltage will not be higher than 0.8V which will not exceed the nominal supply 

for the process of about 1.5V. So using this design technique in any CMOS process, the 

actual gate-source voltages of all the transistors are always far lower than the nominal power 

supply. So there is no stressing to the gate oxide with this approach. 

All the transistors in the auxiliary circuits work at either sub-threshold region or weak 

inversion region depending on the supply voltages. On the contrary, all the transistors in the 

low voltage op amp core work in the strong inversion region. This property makes it possible 

for the low voltage op amp to have comparable high frequency performance to that of the 

regular op amp. 

Because most of the auxiliary circuits are digital and their operating frequencies are 

very low, they consume a very small amount of current. From our experimental 

measurements, the auxiliary circuits draw only 2.1|iA (4% percent of total current) at 0.75V 
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and 2.3^lA (3.4% of total current) at 0.8V. Most of this currents flow through the bias voltage 

generators. Furthermore, the same auxiliary circuits can be used for building larger low 

voltage circuits. The current consumption of the auxiliary circuits will remain at a similar 

level because a wider 02 can be designed for charging more capacitors. 

2.7 Chip Layout 

The chip micrograph is shown in Figure 2.19. In the upper right corner are the layouts 

of the normal 5V op amp and the low voltage op amp. In the left lower comer are the 

auxiliary circuits. Most of the active area is occupied by capacitors. 

Several techniques were used in the chip layout in order to get optimal performance. 

The capacitors are poly-poly capacitors. The bottom plates of the capacitors were carefully 

placed to avoid any possible complications caused by bottom plate capacitance which is 

usually 10%-20% of the total capacitance. Refer to Figure 2.8, the bottom plates of the 

capacitors used for M4 and M5 are connected to the inputs acting as input capacitance. The 

bottom plates of the capacitors used for M6 and M7 are connected to the drain of M4 which 

lowered the pole frequency associated with this node. It does not affect the frequency 

response of the op amp because the dominant pole is still at the output node of the first stage. 

The bottom plates of the capacitors used for M8 are connected to the drain of M5. Its effect is 

enhancing the compensation a little bit. Finally, the bottom plate of the compensation 

capacitor is connected to the output node acting as load capacitance. There is no matching 

requirement for the capacitors. The capacitors were not laid out for matching performance. 

Digital circuits and analog circuits are separated in the layout as far as possible in 

order to lower the switching noise injected into the analog circuits. Bias voltage generators 

are imbedded in the capacitor array and surrounded by guard rings in order to give clean 

outputs. 
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Figure 2.19 Die micrograph 

The current mirrors in the op amp, M1/M2/M3, the transistor pairs M4/M5, M6/M7 

are laid out using common-centroid technique in order to enhance its matching 

characteristics. 

2.8 Experimental Results 

The prototype of this work was fabricated in the AMI 0.5|im CMOS process with 

Vm - 0.8V and Vlp ~ -0.9V by MOSIS. The active area is 560|a.mx760nm including the 5V 

op amp. The testing circuits were built on a breadboard. 

Experimental results of the low voltage op amp are summarized in Table 2.4. It works 

with supply voltage as low as 750mV which is about 0.9V,. It also is able to work with a 

supply voltage up to IV. This supply range is determined by both the effective threshold 

voltages and the V&ar requirements. Slew rate performance is very close to that of a normal 



www.manaraa.com

27 

op amp with similar current level. The input common-mode range can start from close to zero 

because of the voltage source we added to the gate of the input pair. During measurements, 

we found out that the charging time of the capacitor Ct in Figure 2.6 can be as low as 0.4mS 

for a 3.2mS period while still maintain the performance. 

Table 2.4 Summary of the experimental results of the low-voltage op amp 

@750mV @800mV @900mV @1V 

Slew Rate 3.1V/HS 3.8 V/nS 5 V/pS 6.36 V/nS 

GBW 3.2MHz 3.7MHz 3.9MHz 4.2MHz 

DC gain 62dB 64dB 64.6dB 64 dB 

Input offset voltage *2.04mV (3a 

value) 

N/A N/A N/A 

Input common mode 0.1V-0.58V 0.07V-0.64V 0.02V-0.76V 0V-0.89V 

range 

Output swing for 0.31V-0.58V 0.27V-0.67V 0.15V-0.78V 0.1V-0.82V 

linear operation 

PSRR at DC 82dB N/A N/A N/A 

CMRR at DC 56dB N/A N/A N/A 

Total power 38.3|xW (4% 53.6gW 81nW(2.7% 106|J.W (2.4% 

consumption by auxiliary (3.4% by by auxiliary by auxiliary 

Circuits) auxiliary 

circuits) 

circuits) circuits) 

Technology AMI 0.5*im CMOS, double poly, triple metal 

Active area 560|im x760|xm 

Package DIP28 

* Input offset voltages of 15 samples. Maximum value is 3.7mV and minimum value is 

l.lmV. Standard deviation is 0.68mV. 
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Figure 2.20(a) shows the input and output waveform for an inverting gain feedback 

configuration with a gain of one. External resistors of value 10K were used to form the 

feedback network. Figure 2.20(b) shows the unity gain step response. In the design phase, we 

under-estimated the loading capacitance of the op amp. In the testing setup, the loading 

capacitance was about 15pF and that made the phase margin of the op amp to be around 40 

degrees. That is why the overshooting appears in the step response. Table 2.5 shows the 

comparison of the experimental results of the low voltage and the 5V op amp. We observed 

that, with similar current consumption, GBW of the low voltage op amp degrades by less 

than 7% percent from what is achievable with the high voltage op amp when operating with a 

signal 0.8V supply. The DC gain of the low voltage op amp is about 20dB lower than the 

normal op amp. This is due to insufficient output impedance because of the lowered VDSAT 

for the MOSFETs in the low voltage op amp. The power dissipation of the low voltage op 

amp when operating with the 750mV supply is only 11% of that of the high voltage op amp 

with comparable dynamic performance. 

We tested 15 samples for the unity gain step response. All of them gave very similar 

results like what is shown in Figure 2.20(b). This result shows the robustness of this design 

technique. After testing the chip, we adjusted the simulation setup in Cadence to reflect the 

real testing situation. We added power supply models, pad frame models, package models 

and larger load capacitance. The experimental results suggested that the simulation results 

were pretty accurate. Shown in Table 2.6 is the comparison of the simulation results (after 

testing) and the experimental results at the 750mV power supply. 

Table 2.5 Comparison of the normal and the low voltage op amps 

DC gain Current Power GBW Slew Rate 

LV op amp@750mV 62dB 51nA 38.3|j.W 3.2MHz 3.1V/HS 

LV op amp @ 800mV 64dB 67pA 53.6|iW 3.7MHz 3.8V/HS 

5V op amp 84dB 70|lA 350|iW 4MHz 3.9V/HS 
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Figure 2.20 Oscilloscope captures of (a) Inverting configuration with gain of one; 

(b) step response of unity-gain configuration 

Table 2.6 Comparison of the simulation and experimental results 

Simulation results Testing results 

DC gain 64.8dB 62dB 

GBW 3.34MHz 3.2MHz 

Slew Rate 3V/|iS 3.1V/HS 

PSRR at DC 86dB 82dB 

CMRR at DC 56dB 56dB 

2.9 Conclusion 

A threshold voltage tuning technique for designing very low voltage analog circuits 

was introduced. To validate this technique, a low voltage op amp was designed and tested. 

This low voltage op amp used only the standard transistors available in any CMOS process 

and is able to work at a supply voltage LOWER than the threshold voltage ( - 0.9V, ). All key 

transistors in the op amp core work in the strong inversion region despite the extremely-low 

supply voltage. It maintains comparable performance to that of a traditional high voltage 
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design operating at the same current levels while it greatly reduces the power consumption. 

To our knowledge, our design is the first implementation of a strong inversion op amp that 

works at a supply lower than the threshold voltage in standard CMOS process and the first 

very low voltage op amp that maintains dynamic performance comparable to that of op amps 

requiring much larger supply voltages. 
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CHAPTER 3 

A HIGH-SPEED PHASE-LOCKED LOOP WITH NON-SEQUENTIAL 

LINEAR PHASE DETECTOR FOR DATA RECOVERY 

3.1 Clock/Data Recovery and Phase-Locked Loop 

Clock and data recovery (CDR) is a critical function in high-speed transceivers. Such 

transceivers serve in many applications, including optical communications, backplane 

routing, and chip-to-chip interconnects. The data received in these systems are both 

asynchronous and noisy, requiring that a clock be extracted to allow synchronous operation. 

Furthermore, the data must be "retimed" so that the jitter accumulated during transmission is 

reduced. CDR circuits must satisfy stringent specifications defined by communication 

standards thus posing difficult challenges to system and circuit designers. 

At gigahertz data rates, CDR circuits are often implemented by expensive GaAs, 

SiGe, bipolar or BiCMOS processes. With the shrinking of gate length, deep sub-micron 

CMOS technology can also achieve fast operation which makes CMOS implementation of 

gigahertz transceivers possible. Designers face major challenges to take full advantage of the 

high speed capability of the sub-micron technology while still maintain the correct operation 

of the CDR circuits. 

The task of CDR is often realized by using Phase-Locked Loops (PLL). A typical 

CDR system is shown in Figure 3.1. The Phase Detector (PD) is used to compare the phase 

difference of the data and the clock generated by the local voltage-controlled oscillator 

(VCO). The feedback loop is used to adjust the frequency (thus phase) of the clock until the 

clock has the same phase as the data. Ideally, the recovered clock is then used to sample the 

data at the center of each bit period. Because the center of the bit period has the best 
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possibility of being sampled correctly, the re-generated data will have much lower bit error 

rate and thus much wider eye openings if viewed as eye diagram. 

The PD is a key component of the PLL. The performance of CDR circuits critically 

depends on the characteristics of the PD. With existing circuit implementations, the PD is 

often the bottleneck that limits the data rates that can be achieved by the PLL. 

The PD can be categorized into two types. One is used in PLLs that lock to a 

reference clock signal. Many PDs can perform this function. Included in the group are Gilbert 

multipliers, XOR gates and RS latches etc. The other can be used in PLLs that lock to 

random Non-Return-to-Zero (NRZ) data and recover the clock signal which is embedded in 

the data stream. Since the spectrum of the NRZ data has reduced energy at the data rate, this 

makes the task of data recovery more difficult and places more severe restrictions on the 

performance of the PD. Often it requires a nonlinear operation at the front end of the PD 

circuit to generate more energy at its data rate. 

With the booming of telecommunication applications in the late 90's, significant 

progress has been made on designing high speed CMOS PDs. Many novel configurations and 

design techniques have emerged. In the next section we will give a review of the existing PD 

structures. 

Recoverd Data 

Recovered Clock 
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error 
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Data 

Clock 
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Figure 3.1 Block diagram of a typical data recovery system 
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3.2 Phase Detector Review 

A brief review of the existing PDs will be given in this section. Basic operation for 

each PD and its advantages, as well as shortcomings, will be summarized. Details about how 

those PDs can be used as phase detector will not be repeated here. For those who are 

interested, some details can be found in the references. 

3.2.1 Phase Detectors for Clock Recovery 

A. Gilbert Cell Phase Detector 

The schematic of the CMOS Gilbert cell [3.1] is shown in Figure 3.2. The output of 

the Gilbert cell can be expressed as: 

^ out 

uCox 

J" Vout 

Figure 3.2 Schematic of Gilbert cell 

The output current, therefore, has a nonlinear relationship with Vx and Vr. When Vx 

and VY are very small, the output can be approximated by 

=|/,-'8i=V2A:V,VV (3.2) 
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We conclude that when signals of small amplitude are applied to the inputs of the 

cell, it behaves as an analog multiplier. If the phase difference of the inputs is in the vicinity 

of 90°, the average value of the output is linearity proportional to the phase difference. 

The advantage of the Gilbert cell as a PD is its high speed compared to other 

structures. However, it suffers from a severe disadvantage. Its gain depends on the amplitude 

of the inputs. It also consumes static current which is not desired. 

The Gilbert cell is seldom used in modern digital data communication systems. 

B. XOR Phase Detector 

The principle of the XOR gate used as PD [3.2] is shown in Figure 3.3. As the phase 

difference between the inputs "A" and "B" deviates from 90°, the output duty cycle departs 

from 50% resulting in an average output that is proportional to the phase error. 

The Gilbert cell can actually be used as an XOR gate if the amplitude of the inputs are 

large. The advantage of the XOR gate as a PD is that it has a low sensitivity to the noise. 

Unfortunately its performance will be greatly impaired by asymmetric inputs (different duty 

cycle). 

V 
OUT 

A 

B 

T_ 

Figure 3.3 Operation of the XOR as a phase detector 
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C. Two-state Phase Detector 

The name of "two-state" PD [3.2] comes from the fact that this kind of PD has two 

operation states. Shown in Figure 3.4 are the two-state PD and its state transition diagram. 

The high and low output indicate the two states. 

The principles of the operation of the two-state PD are: the rising edge on signal R 

will make the output Q=1 while the rising edge on signal S will make the output Q=0. The 

advantages of this PD are the independence of the average value of its output on the duty 

cycle of the inputs and the improved acquisition range. Some drawbacks of this structure are 

that they are more sensitive to noise compared to the XOR and they may make the PLL lock 

to the harmonics (false lock). 

out 

STATEl STATE2 

> R 

RS latch 

Figure 3.4 Two-state phase detector and its state transition diagram 

D. Three-state Phase Detector 

The three-state PD [3.2] [3.3] is similar to the two-state PD. The schematic of one 

possible implementation of the three-state PD and its state transition diagram are shown in 

Figure 3.5. It employs two edge-triggered resettable D flip-flops with their D inputs 

connected to VDD (logic HIGH). Signals A and B act as the clock input of the two flip-flops. 

The state of the PD is determined by the output of the two D-flip flops. The three states are: 
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VDD 
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Figure 3.5 Three-state phase detector and its transition diagram 

(VA = High,VB = Low), (VA = Low,VB = Low) and (VA = Low,VB = High) 

VA and can not be high at the same time because this will reset the DFFs. The 

state transition diagram in Figure 3.5 clearly shows the operation principles of the three-state 

PD. 

The performance of the three-state PD is better than that of the XOR and the two-state 

PD because it can also detect frequency difference. From its state transitions operation, if 

û)A > ù)B, there are only one or no rising edges of VA between two adjacent VB rising edges. 

So the PD will stay at state 2 or 3, it can not reach state I. The output VOM will remain 

positive. If CûB > (0A, there are only one or no rising edges of Va between two adjacent VA 

rising edges. So the PD will stay at state 2 or 1, it can not reach state 3. The output Vou[ will 

remain negative. This is a great aid in acquiring lock when the two frequencies are initially 

different. 

This PD is edge-triggered and it is not sensitive to the duty cycle of the inputs. But it 

is very sensitive to the loss of transitions in the inputs which means it is not suitable for data 

recovery. 
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3.2.2 Phase Detectors for Data Recovery 

A. Hogge Phase Detector 

The Hogge PD [3.4] and its variations [3.5] [3.6] are probably the most widely-used 

PD for data recovery. The schematic of Hogge PD is shown in Figure 3.6(a). It uses two D 

flip-flops and two XOR gates. Complementary clocks are used to drive the two DFFs. The 

operation of the Hogge PD is shown in Figure 3.6(b). The signal "DOWN" is used as a 

reference to "UP". The width of pulse appeared on "DOWN" will always be half the period 

of "CLOCK". Figure 3.6(b) shows the situation when PLL is locked. We see that the pulse 

widths on "UP" and "DOWN" are equal. The output of the PD is the duty cycle differences 

between "UP" and "DOWN". Using this PD to drive a charge pump, the output of the charge 

pump will not change when the phase difference between data and clock is 0. 

Consider the situation when "CLOCK" is leading "DATA" (phase leading), the pulse 

widths on "UP" will be shorter while the pulse width on "DOWN" will not change. 

Similarly, when "CLOCK" is lagging "DATA" (phase lagging), the pulse widths on "UP" 

will be wider while the pulse width on "DOWN" will not change. Therefore, the output of the 

PD will change negatively or positively according to the phase difference at the input. 

DATA 

CLOCK. 
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CLOCK 

A 

B 
1 
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(b) 

Figure 3.6 Hogge phase detector (a) schematic; (b) its operation 
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The Hogge topology is a linear PD generating a small average as the phase difference 

approaches zero and generating an output that is linearity proportional to the phase difference 

during normal operation. This linear behavior is desirable, particularly so when contrasted to 

that of the bang-bang PD as we will discuss in the next section. 

B. Bang-Bang Phase Detector 

Bang-bang PD [3.7] [3.8] [3.9] [3.10] refers to a group of PDs that only have two 

output states. This is in contrast to the linear PDs that have an output that is either 

proportional to the phase difference or at least varies continuously with phase difference. All 

the PDs we discuss so far fall into the linear this category including the Hogge PD. 

The simplest bang-bang PD is just a D flip-flop. Its structure and transfer 

characteristic are shown in Figure 3.7. Circuit of Figure 3.7(a) operates as follows. Upon 

turn-on, the DFF multiplies the data by the VCO output, generating a beat that drives the 

VCO frequency toward the input bit rate. If the initial difference between the VCO frequency 

and the data rate is sufficiently small, the loop locks, establishing a well-defined phase 

relationship between "DATA" and "CLOCK". In fact, with the bang-bang characteristic 

provided by the DFF PD, the data edges settle around the zero-crossing points of the clock. 

Even for a slight phase error, the PD generates a large output. 

Avg.Output 
A 

A0 

Figure 3.7 Simplest Bang-Bang phase detector and its transfer characteristic 
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This PD has a lot of drawbacks and has limited applications. More sophisticated 

bang-bang PDs have been proposed over the last decade. All of them bear a similar transfer 

characteristic to that shown in Figure 3.7(b). Both the advantages and the drawbacks of the 

bang-bang PD are related to its two-state output. Because of the simplicity of the output, it 

can employ very simple circuit to achieve high speed. On the other hand, the two-state output 

of the bang-bang PD will create a significant ripple on the control line of voltage-controlled 

oscillators when the PLL is in lock which causes high jitter. Usually additional circuits are 

needed to suppress the ripple on the control line. 

C. Phase Detector with half-rate clock 

PDs with half-rate clock input [3.11] [3.12] [3.13] have become a hot topic recently 

where data rates of the transceiver design moves into the gigabit/s range. At very high speeds, 

it may be very difficult to design oscillators that provide an adequate tuning range with 

reasonable jitter. For this reason, PLL circuits may sense the input random data at full rate but 

utilize a VCO running at half the input rate. Such PLL topologies require a PD that provides 

a valid output while sensing a full-rate random data stream and a half-rate clock. 

One example [3.13] of this type of PD is shown in Figure 3.8(a). The circuit consists 

of four latches and two XOR gates. The data is applied to the inputs of two sets of cascaded 

latches. Each cascaded latches constitutes a flip-flop that retimes the data. 

The operation of the PD can be described using the waveforms depicted in Figure 

3.8(b). The basic unit employed in the circuit is a latch whose output carries information 

about the zero crossings of both the data and the clock. The output of each latch tracks its 

input for half a clock period and holds the value for the other half, yielding the waveforms 

shown in Figure 3.8(b) for points Xl and X2. The two waveforms differ because their 

corresponding latches operate on opposite clock edges. Produced as Xi® Xz, the "Error" 

signal is equal to ZERO for the portion of time that identical bits of Xx and Xz overlap, and 
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equal to the XOR of two consecutive bits for the rest. In other words, "Error" is equal to 

ONE only if a data transition has occurred. 

The random nature of the data and the periodic behavior of the clock make the 

average value of "Error" pattern dependent. For this reason, a reference signal must also be 

generated whose average conveys this dependence. The two waveforms Yl and Yz contain 

the samples of the data at the rising and falling edges of the clock. Thus, % (BK, contains 

pulses as wide as half the clock period for every data transition, serving as the reference 

signal. The amplitude of "Error" must be scaled up by a factor of two with respect to 

Reference so that the difference between their averages drops to zero when clock transitions 

are in the center of the data eye. 

This structure is very similar to Hogge PD. Actually it is an interleaved Hogge type 

PD modified to make it able to work with a half-rate clock. The speed potentials and 

limitations of the Hogge PD and this PD are the same. 

There are several other types of PDs such as sample and hold PD [3.14] and 

Alexander PD [3.15], which will not be discussed here in details. 
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Figure 3.8 Phase detector with half-rate clock (a) Schematic; (b) its operation 
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3.3 A New Phase Detector for High Speed Data Recovery 

All the PDs used for data recovery that we discussed so far are based on state-

machines, that is, they use flip-flops to memorize the state of the PD to determine the phase 

difference between the random data and the clock. This approach has its drawbacks. Take the 

Hogge PD, the most popular one, for example. Typical of the state-based PDs in this class, 

the performance of the Hogge PD deteriorates rapidly at higher frequencies. These 

performance limitations are due mainly to the inadequate settling performance of the flip-flop 

used to form the state machine. 

In order to overcome the inability of the Hogge PD to work at higher speeds, a new 

PD was introduced [3.16]. It can be used in PLLs designed to recover high-frequency clocks 

embedded in pseudo-random NRZ data streams. The simple architecture and the elimination 

of the state machine contribute to the improved high-frequency performance of this circuit. 

In contrast to existing PDs that use a single-phase clock and multi-phased data 

signals, the new PD uses multi-phase clock signals and the actual data sequence to achieve 

simplicity and high speed operation. A general structure of the proposed PD is shown in 

Figure 3.9. It is applicable for all kinds of PLL designs. Multi-phase clock signals 

("CLK_dl" and "CLK_d2") are generated by delaying the clock signal "CLK". When the 

PLL acquires lock, "CLK_dl" will phase-lock to "Data_dl". The operation details of this PD 

will be explained later. 
Data_d1 

Data Delay 
Data_d2 

Down 
CLK 

Delay 

CLK_d1 

Delay 

Delay 

Figure 3.9 General structure of the proposed phase detector 
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In PLLs using ring-oscillator type VCOs, the multi-phase clock signals are inherently 

available and two delay stages for generating the delayed clock signals are not necessary thus 

simplifying the structure of the PD. For example, the PD used with a 3-stage ring oscillator 

VCO is shown in Figure 3.10. The two signals extracted from the VCO labeled "CLKJead" 

and "/CLKJag" are the leading and inverting lagging signals of the Clock ("CLK") signal. 

Comparing Figure 3.9 and Figure 3.10, "CLK_dl" is analogous to "CLK" of Figure 3.10, 

"CLK" of Figure 3.9 is analogous to "CLKJead" and "/CLK_d2" is analogous to 

"/CLKJag". For either the structure of Figure 3.9 or Figure 3.10, two data delay cells and the 

two XOR gates are used to detect the edges of transitions in the random input data. 

Data_d1 Phase Detector 

Data Delay Delay 
Data d2 

/CLKJag CLK 
Down 

Ctrl voltage 
VCO CLKJead 

Figure 3.10 Phase detector structure used with ring oscillator with odd-number stages 

Figure 3.11 shows the timing diagram (for circuits shown in Figure 3.10) for a 

segment of random input data when the PLL is in lock. The circuit aligns the rising edges of 

"CLK" with the middle of signal "A" independent of the data at the input. The falling edges 

of "C" and the rising edges of "B" are aligned at the dotted line, which, when the PLL is in 
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lock, are also aligned with the middle of the signal "A". The "Up" and "Down" signals are 

generated by using "B" and "C" to partition the "A" signal into equal width segments at each 

data transition. Therefore, the "Up" and "Down" signals have the same duty cycles when in 

lock and the output of the loop filter, which filters the difference in the duty cycles of the 

"Up" and "Down" signals, will not be driven up or down. The "Up" and "Down" signals are 

only generated whenever there are transitions in the incoming data stream. This property 

provides the ability to handle random NRZ data. Note that when the PLL is in lock, "CLK" 

phase-locks to "Data_dl" instead of "Data". 
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Figure 3.11 Operation principle of the proposed phase detector (in lock) 

Figure 3.12 shows the situation when "Data" is leading and lagging the "CLK". When 

"CLK" leads "Data" as depicted in Figure 3.12(a), the falling edge of "C" and the rising edge 

of "B" no longer align in the middle of "A". Instead, they will move to the right of the pulse 

"A". Thus, the width of the "Up" will decrease and the width of "Down" will increase, 

which, in turn, will bring down the frequency of "CLK" through PLL and eventually make 
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the PLL back to lock. When "CLK" lags "Data" shown in 3.12(b), opposite change will 

happen for "Up" and "Down" which will increase the frequency of the "CLK". 

The accuracy requirements for the delay time of the delay cells in the PD are lax. 

Proper operation of the proposed PD will be achieved provided the delay cell satisfies the 

inequality: 

max ir0l(r-r0) 
V ^ ^ 

<TJeiay < min T-yT„,i(r + r0)j (3.3) 

where T  is the period of the signal "CLK", "7"0" is the pulse width of the signal "A", and 

delay is the delay time of the delay cell. From the timing diagram, we can see the delay 

time mismatch of the two delay cells will not cause any problem for the correct operation of 

the PD. 
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Figure 3.12 Timing diagram when (a) clock leads data; (b) clock lags data 
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For any VCO with odd number (> 3) of stages, the "CLKJead" signal can come from 

the non-inverting output of the stage immediately preceding the clock output stage and the 

"/CLKJag" signal can come from the inverting output of the immediately following stage. 

Other signals can also be used for "CLKJead" and "/CLKJag" when there are more than 3 

delay stages depending on the VCO design. 

When the VCO has an even number (> 4) of stages, the PD structure becomes even 

simpler. For example, Figure 3.13 depicts a 4 stage VCO. In this case, we can eliminate the 

AND gate that is used to generated the signal "A" since the signal "A" can be directly 

extracted from the VCO. For more than 4 delay stages in the VCO, the number and position 

of the cross-overs must be considered when extracting the "A" signal. 

Data_d1 Phase Detector 

Data Delay Delay 
Data_d2 

Down 

CLK 

CtrLvoltage VCO 

Figure 3.13 Phase detector structure used with ring oscillator with even-number stages 

The transfer characteristic of the PD for a typical Tdelay is shown in Figure 3.14. This 

sinusoid-like relationship is typical of a linear PD. Corresponding to different delay times, the 

shape of the curve will change modestly, but its functionality as a useful PD will be 

maintained. 
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Figure 3.14 Typical transfer characteristic of the proposed phase detector 

3.4 Analysis of the speed of new PD and Hogge PD 

In our realization of the new PD, we used NAND and NOR gates to implement the 

function of AND gates because complementary signals are available. 

The major factors that affect the speed of these two PDs are the rise time, fall time 

and the propagation delay of their components. Actually the propagation delay Tdetay as 

defined in Figure 3.15 contains rising (falling) time information. So it is fair to use the 

propagation delay of the gates to make a simple relative speed comparison of the Hogge PD 

and our new PD. 

inputs 

delay 

risetime 
fall time 

outputs 

Figure 3.15 Illustration of propagation delay, rise time and fall time 
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The propagation delay of a DFF, an NAND (NOR) gate and an XOR gate can be 

obtained from circuit simulations. To make the speed comparisons, we will first characterize 

the propagation delays of the basic gates. 

One of the fastest DFF realization is shown in Figure 3.16(a) [3.20]. It is also used as 

the frequency divider in the de-embedding circuits for testing our PLL design. Transistors are 

sized to achieve high speed. The implementations of the NAND and NOR gates are static 

CMOS logics as shown in Figure 3.16(b). They have very similar speed performances. The 

pass-transistor XOR gate shown in Figure 3.16(c) is used to achieve high speed. 

Ht 
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Figure 3.16 (a) 9-transistor dynamic DFF; (b) NOR and NAND gates; (c) Pass-transistor 

XOR gate 
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Using TSMC 0.25pm process device models and the HSPICE simulator, their 

propagation delays are summarized in Table 3.1. The rising and falling time for the input 

signals are both lOps. The loads for these circuits are 20fp. 

We see that the NAND (NOR) and XOR gates have great advantage of much smaller 

propagation delay. 

Table 3.1 Speed performance of the DFF and NAND gate 

DFF NAND NOR XOR 

Propagation 

delay 

105ps (rise) 48ps (rise) 43ps (rise) 40ps (rise) Propagation 

delay 121ps (fall) 60ps (fall) 59ps (fall) 39ps (fall) 

Our first comparison of the speeds of new PD and Hogge PD will be based on the 

propagation delay of DFF and NAND gate and assuming everything else in the PDs are ideal. 

For Hogge PD, it normal operation is shown in Figure 3.17(a). As shown in Figure 

3.17(b), when there is a delay in the DFF, the "A" and "B" will be delayed and the width of 

"DOWN" signal will be the same as in ideal case while the "UP" signal is wider. This will 

cause a static phase offset when the PLL is in lock. We can also see if the delay is bigger than 

half of the clock period as shown in Figure 3.17(c), the problem is very serious. The falling 

edges the "CLOCK" are sampling the wrong places of signal "A" and the operation of the PD 

is totally screwed up. We can conclude that the highest clock frequency that Hogge PD can 

handle is given by: 

where Tdelay is the propagation delay of the DFF. 

This means that in the TSMC 0.25|im process, the upper limit set by the propagation 

delay of the DFFs for the Hogge PD is about l/(2x -113ps) = AAGHz. 
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For our new PD, the delays of the NAND and NOR gates do NOT affect the operation 

of the PD at all as shown in Figure 3.18. They only appear as delays in the outputs. 

Thus, the propagation delay of the DFFs will cause a static phase offset and set the 

upper bound for the clock frequency that the Hogge PD can handle. The propagation delays 

of the NAND and NOR gates in new PD do not affect its operation. 
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Figure 3.17. Hogge PD operation with DFF propagation delays (a) ideal case without delay; 

(b) delay is smaller than half clock period; (c) delay is larger than half clock period 
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Secondly, let us see the effects of the propagation delay of the XOR gates to the 

speeds of the Hogge and new PD. 

As shown in Figure 3.19(a), the delay of the XOR will shift the output of the Hogge 

PD. It does not affect its speed. The timing diagram for new PD with XOR delay is shown in 

Figure 3.19(b). The XOR delay will cause a static phase offset. But unlike the case of DFF 

delay for Hogge PD, the XOR delay does NOT limit the upper bound of the input clock 

frequency. This is a benefit of the pure combinational logic operation instead of sequential 

logic operation. 
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Figure 3.18. Effect of NAND (NOR) delay to new PD 

Overall, the speed of the Hogge PD is limited by the DFF delay and the speed of the 

new PD does not limited by either NAND (NOR) delay or XOR delay. This property show 

great speed advantage of new PD over Hogge PD. 

Having all the information above, we can now evaluate the speed of the new PD and 

the Hogge PD from a different point of view. That is to compare the static phase offset that is 

introduced by propagation delays. This offset will result in a higher bit error rate in the data 

recovery system because the clock sampling edge is not in the center of the data period. 

Usually a certain static phase offset budget is set to ensure an acceptable bit error rate. 
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Figure 3.19. (a) Effect of XOR delay to Hogge PD; (b) effect of XOR delay to new PD 

From the analysis above, we know the DFF delay and the XOR delay will cause a 

static phase offset in the Hogge PD and our new PD respectively. For both PDs, the amount 

of static phase offset is given by 

T 
delay x360° where Tcuc is the clock period 

Tcuc 

Using the parameter we got from simulation, Td e l a y D F F  ~ 113ps and Tdeltty XOR =40ps 

Figure 3.20 shows the static phase offset of the Hogge PD and the new PD versus input clock 

frequency when the clock is locked to data. The slopes of the two lines are proportional to 
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their propagation delays. By setting the phase offset budget at any point will result close to 3 

times higher operating frequency for the new PD than for the Hogge PD. As shown in Figure 

3.20, the line of the Hogge PD is cut off because of inability to operate at any higher speed. 

Basically, this graph shows the advantage of the much smaller XOR propagation delay over 

the DFF propagation delay. 

Phase offset Limited by its 
(degrees) operation 

180 

144 

108 

72 

36 

X 
V-/' z 

HoggcPD - "CWPD 

Phase offset 
budget 

Ï 2 3 5 6 7 8 ^ciock 
frequency 

(GHz) 

Figure 3.20 Clock frequency vs. phase offset plot for Hogge PD and new PD 

The preceding analysis is not intended to indicate the ACTUAL speed for Hogge and 

our new PD in TSMC 0.25|im CMOS process. It is intended to demonstrate the relative 

speed advantage of the new PD. 

Actually the motivation for us to propose the new PD was that we found the Hogge 

PD was not able to work as fast as we need. In one of our PLL design projects, we spent more 

than 6 weeks trying to design a Hogge PD using fully-differential current-steering logic to 

achieve a 2GHz operating frequency in the HP 0.35|im CMOS process. We were unable to 

meet our goal over process and temperature variations and were only able to reliably achieve 

about 1.5GHz performance. In contrast, we spent less than one week to design our new PD to 

work at 2GHz over the corners and temperatures using static and pass transistor logic in the 

same process. 
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3.5 Phase-Locked Loop Implementation 

A high speed PLL using the proposed PD was designed. The architecture of the PLL 

is shown in Figure 3.21. It is a typical charge pump PLL structure. A high resolution current-

steering charge pump follows the PD to convert the outputs, "Up" and "Down", to a control 

voltage referenced to positive power supply. A second-order passive loop filter is used. The 

VCO has a bias generator and four delay stages. 
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Figure 3.21 Structure of the phase-locked loop 

Choosing different parameters for the design will greatly affect the loop performance 

of the PLL, especially the locking characteristics, stability and jitter. Assume the charge 

pump bias current is Ip, the transfer function of the loop filter is F(s) , and the gain of the 

VCO is Kvco. The input and the output of the PLL are represented as Qin and 0out. A 

standard small signal analysis [3.17] shows that the small-signal transfer function of the PLL, 

0ou,l0in is given by: 
0OU _ KvcoIpF(s) 

2m + Kv c oIF{s) 
(3.5) 
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which shows the standard low pass characteristics. The loop will reject high-frequency phase 

noise from the input and reject low-frequency phase noise from the VCO. Since the VCO is a 

major contributor to the jitter in the recovered data, to minimize the impact of the VCO phase 

noise, we need to make the bandwidth of the PLL large. This will not only suppress the phase 

noise of the VCO, but also increase the tracking speed of the PLL. 

The gain of the VCO, Kvc0 , is about 1.2GHz/V in our design. The bias current of the 

charge pump is about lp = 50/zA. Loop filter components value of Cl=40p, C2=10p and 

R1=10K are selected. With these design values, the loop bandwidth is about 6MHz and the 

phase margin of the loop is around 65 degrees. 

3.5.1 Phase Detector 

The structure of the PD is the same as that shown in Figure 3.13. The delay cells are 

simply implemented by a 3 stages of inverters as shown in Figure 3.22. Since the delay time 

requirement for them is not very critical, it is easy to control the delay time over the 

temperature range and the process corners. 

12/0. L 8/0.24 

6/0.24 

0.72/0.241 > 24/0 

Figure 3.22 Implementation of the delay cells in phase detector 

The initial goal of designing this PD is to eliminate the sequential logic circuits that 

are difficult to operate at high speeds. The proposed PD consists of only combinational logic. 
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It has the ability to operate at a higher speed than sequential logic circuits. A good choice of 

architectures for the XOR gates and AND gates is, however, crucial to achieve the high-speed 

operation in the proposed PD. 

Several styles of CMOS logic can be considered. One is classic complementary 

CMOS logic which is built from NMOS pull-down and PMOS pull-up logic networks. 

Simple gates, such as N AND/NOR can be realized very efficiently with only a few transistors 

and a few circuit nodes. Other gates, such as XOR and AND gates, require more complex 

circuit realizations. 

Another choice is pass-transistor logic. Pass-transistor logic XOR gates are very 

simple and can operate at very high speeds. However, special care must be taken to 

circumvent the swing degradation problems which are of concern in pass-transistor logic. 

Several styles of pass-transistor logic are available including Complementary Pass-

transistor Logic (CPL), Swing Restored Pass-transistor Logic (SRPL), Double Pass-transistor 

Logic (DPL), and Single-Rail Pass-transistor logic (LEAP). We used DPL [3.19] as the 

structure for XOR gates because of its speed advantage in our simulation. In DPL style, both 

NMOS and PMOS logic networks are used in parallel. This provides full swing on the output 

signals (i.e., no level restoration circuitry is needed), and circuit robustness is therefore high. 

The schematic is shown in Figure 3.23. All the signals in the PD are complementary. 

It is easier to have complementary signals to drive the charge pump and complementary 

signals are also helpful in minimizing the switching noise injected into the substrate. 

Because that all the signals are complementary, the AND gates in Figure 3.13 are able 

to be implemented by standard static CMOS NAND gates and NOR gates as shown in Figure 

3.24. 
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Figure 3.23 Schematic of the DPL-style XOR gate 
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Figure 3.24 Schematics of (a) NOR gate; (b) NAND gate 
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The circuits were first designed and simulated in HP 0.35^im CMOS process. The 

clock frequency is 2GHz. All schematic and anticipated layout parasitics are included. 

Additional lOfF capacitors were added at each connection nodes to model the interconnection 

capacitance. The simulation covers the temperature range from 0°C to 100°C and all process 

comers. The input data stream is a 1GHz signal with 50% duty cycle which represents the 

NRZ data pattern "0101010 " (not random). Using HSPICE simulator and level 49 

BSIM3 device models, the transfer characteristics of the proposed PD is shown in Figure 

3.25. One of the three curves is the PD transfer characteristic at room temperature with the 

normal model. The other two are under extreme conditions; specifically 100°C at the slow 

process comer and 0°C at the fast process comer. 

PO trenefer ehereetertetlee (3 #####) 

Figure 3.25 Simulated transfer characteristics of the phase detector 

The PD operates correctly under all the conditions. From these simulations, it is 

apparent that very high gain is achieved around the zero phase error point. The "Dead zone" 

which is inherent in many phase detectors is absent. 

The simulation results with random input data are shown in Figure 3.26. The 

performance of the PD with two patterns of NRZ data was tested. One pattern is series of 
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"l"s with one "0" ("11110"); another is series of "0"s with one "1" (00001). Results show that 

they all have zero output at zero degree phase shift and the PD gain is reasonably constant. 

A snapshot of the output waveforms of the PD is shown in Figure 3.27. Both "Up" 

and "Down" signals are complementary. The pulse widths of them determined by distances 

between the cross points of the waveforms. 

PO transfer «haracttrftttes (random data) 

300 

200 

1 100 

t. 
-08 -06 •OS 413 064 016 0.32 0 48 

•too 

200 

| —«-random dit» (0000100001)-«—random data (nnonncj 

Figure 3.26 Simulated transfer characteristics of the phase detector for random data 

3.0n J.2n J.4n J.gn J.fln 4. an 4^n 

Figure 3.27 Output waveforms of the PD ("Up" and "Down" signals) 
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3.5.2 Charge Pump and Loop Filter 

In order to achieve high resolution, we chose a current-switching type charge pump. 

The schematic of the charge pump, together with the loop filter, is shown in Figure 3.28. The 

"Up" and "Down" inputs are driven by the complementary outputs of the phase detector. 

Several considerations of the charge pump design deserve mention: 

• To maximize the speed of the charge pump, the bias currents should never be cut off 

during the operations 

• Relatively large transistors are used to minimize the effects of mismatch 

• Properly set the bias voltages so that the switching transistors would operate at active 

region instead of triode region when they are turned on 

YJ2Q_ 

9.6/0.24 9.6/0.24 

Up+ 
0.72/0.24 

0 1 
Down-

0.72/0.24 20p_ 

Up-
2K^ R1 

CI 

1.92/0.24 

. VPP 

0.72/0.24 

Out 

C2 
" 5p 

Down+ 

.72/0.24 

1.92/0.24 r 
Figure 3.28 Schematic of the current steering charge pump and the loop filter 

A simple passive second-order loop filter was used. It reduces the ripple which is 

inherently present in second-order loops at the control voltage node. The values of Cl, C2 

and R1 are carefully chosen in order to maintain an adequate phase margin in the third-order 
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loop and minimize the control voltage ripple. The whole PLL is a third-order loop. But its 

behavior can be approximated as a second-order loop if C, » C2. [3.17] 

3.5.3 Control Voltage Generator and Voltage-Controlled Oscillator 

The VCO is a 4-stage ring oscillator based structure. One of the delay stages in VCO 

and the control voltage generator are shown in Figure 3.29. Both of them are based on the 

topologies presented in [3.18]. 

The delay stage shown in Figure 3.29(a) is a transitional fully-differential delay stage 

design except the symmetric resistive loads. The symmetric loads consist of a diode-

connected PMOS device in shunt with an equally sized biased PMOS device. The effective 

resistance of the load elements changes almost linearly with the change of PMOS bias 

voltage Vcp [3.18]. Thus the delay time will change linearly with Vcp. It not only provides 

good control over delay time, but also leads to high dynamic supply noise rejection. 

Two control voltages Vcp and Vcn are generated from Vcontrol by the control voltage 

generator which is shown in Figure 3.29(b). It consists of a replica circuit of the VCO delay 

stage and a single-stage operational amplifier. It establishes a current that is held constant and 

independent of power supply by adjusting Vcn so that Vcp is equal to Vcontrol, which 

greatly helps the power noise rejection performance of the VCO. The main function of this 

generator is to continuously adjust the bias currents for delay stages providing a tuning range 

wide enough to compensate for the temperature and process variations. 

Shown in Figure 3.30 is the simulation waveform of the VCO differential outputs. 

3.5.4 Other Circuits 

Except the circuits that we have already discussed, there are other circuits 

implemented in the PLL. 
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Figure 3.29 Schematics of (a) delay stage; (b) control voltage generator 
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Figure 3.30 Output waveform of the VCO 
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Preset circuit, which is used to preset the initial control voltage, is shown in Figure 

3.31(a). The input inverter is used to isolate the "Preset" control signal. Ml and M2 are sized 

so that the output is higher than 1.5V when "Preset" signal is active. 

Preset 

VDD 

-| |v44/0.24 -| jrëo.24 

-| |Q72/0.24 L||do. 

Control 
Voltage 

(a) 

12/0.24*1 1 j j^/0 

VDD 

.24 12/0.24 

Vout> 

•t\[-Hp 12/0.24 

Vout-

3 Vin> 

Vtn-
5.76/0.24 5.76/0.24 76/0.24 5.76/0.; 

(b) 

Figure 3.31 Schematics of (a) preset circuit; (b) output buffer 

Because the speed of this PLL is very high, we designed frequency divider circuits to 

lower the frequency of the clock in order to have an easier measurement in case the high 

frequency clock may not be good enough for testing. The frequency divider is a DFF based 

divider very similar to the one shown in Figure 2.11 except we have 5 DFFs in the PLL. So 

the dividing ratio is 32:1. The structure of the DFF is the same as the one shown in Figure 

2.12. 
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Output buffers are designed to drive the load capacitance. It is for testing purposes. 

The schematic of one stage is shown in Figure 3.31(b). It consists of two opposite rail-to-rail 

NMOS differential amplifiers. Several stages of such circuits were used in series for 

buffering the clock output and the divided clock output. 

3.6 Simulation Results 

Using HSPICE simulator and TSMC 0.25|iim CMOS process device models, the PLL 

successfully locks to a pseudo-random input data with a data rate of 2.5Gbit/s under normal 

and extreme cases. 

All the schematic parasitics were included in the simulation. Input data was distorted 

by passing it through a cascaded string of inverters before going into the PLL. Initial 

conditions were set to the control voltage. 

Figure 3.32 shows the locking characteristics of the control voltages under 3 

situations. The simulations show the locks were successful acquired. 

East.CornerMojdel 

Normal Model 
: Z5*c;— 

StowComerModel 
100OQ- r-

Figure 3.32 Simulated acquisition processes of the phase-locked loop 
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Figure 3.33 Details of the control voltage ripple when PLL acquires lock 

Figure 3.33 shows the locking transient with the worst ripple amplitude, which is the 

case of slow corner model at 100°C. We can see the ripple amplitude is still very small 

(<=lmV). Though this simulation didn't consider any noise sources such as those associated 

with the power supply, ground or any associated digital circuits, it still demonstrated the low 

noise level from the system design view. In the real world, such noises would be minimized 

by using techniques such as fully-differential circuits. 

Additional simulation results showed the locking range of the PLL is 1.5GHz-

2.7GHz. The lower bound was obtained at fast model corner at 0°C and the upper bound 

occurred at the slow model corner at 100°C. The power dissipation is about 40mW (nominal) 

under 2.5V power supply for PLL core which was quite low. 

3.7 Chip Layout 

It is extremely important to have a well-considered layout, especially for high speed 

circuits. The floor-plan for this PLL is shown in Figure 3.34. PD is separated from VCO and 
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the output buffers as far as possible to the corners of the layout. For sensitive analog circuits 

such as PD, charge pump and loop filter, they all are surrounded by double guard rings in 

order to isolate the substrate noise. Furthermore, the metal line for control voltage is shielded 

by two parallel metal lines connected to VDD at each side. Also, a massive area of substrate 

contacts are put between the output buffers the analog circuits. 

The capacitors in the loop filter are implemented by NMOS gate capacitor. Resistor is 

implemented by available high-resistance N-diffusion ploy resistor which has the lowest 

variation and temperature coefficient in this process. 

Output Buffers 

Substrate Contacts | VCO | 

Charge Pump+Loop Filter 

Double guard - ring 

Figure 3.34 Floor planning of the phase-locked loop layout 

The supply nets for PLL and output buffers are separated to minimize the noise 

injection. On-chip power supply decoupling was implemented by NMOS gate capacitors. A 

very simple low-ESD pad frame is used to lower the parasitics and achieve high speed. On-

chip 50£2 terminations were also implemented. 
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3.8 Experimental results 

The prototype was fabricated in TSMC 0.25|im CMOS process. The chip micrograph 

is shown in Figure 3.35. On the left upper corner is the PLL. The package chosen for the PLL 

is LCC52 with gold lead. Critical signals for the PLL were connected through the package 

with the shortest electrical path to minimize the inductance which is the biggest concern in 

high speed circuits. 

A printed-circuit board with four copper layers was designed for testing PLL. The 

upper layer is used for routing high speed signals. Special care was taken to make sure there 

are no parallel signal traces. The width of the copper line was calculated and designed for the 

data rate we were shooting for. The second layer is ground layer. The third layer is used for 

power supply. The bottom layer is used for routing low speed signals. 

The board under testing is shown in Figure 3.36(a). A LCC52 socket with gold lead 

was used to connect the PLL chip to the board. At the initial testing, we found that the on-

chip termination resistors were far larger than 50Q. We decided to use off-chip terminations. 

The off-chip terminations and the decoupling capacitors are shown in Figure 3.36(b) which is 

the bottom side of the board. 

Figure 3.35 Chip micrograph 
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(a) (b) 

Figure 3.36 Photos of the (a) prototype under testing; (b) off-chip termination and 
decoupling (bottom side) 

During the testing, we found that the output clock was not stable enough to measure 

the frequency. At the position where the frequency-divided signal has transitions, there are 

spikes appeared on the output clock. The reason for this phenomenon is that the output buffer 

for frequency-divided signal is too strong and whenever there is transition, a large amount of 

current is flowing through the power supply causing a large power supply noise that affects 

the output clock. Furthermore, the large switching current also injects noise to the substrate 

causing the same problem on the output clock. 

Fortunately, the frequency-divided clock is stable and its frequency can be reliable be 

measured. To verify the locking condition of the PLL, we used the frequency-divided clock to 

observe if it keeps tracking the changing frequency of the input reference. 

The PLL successfully locks to both 1.05GHz clock (equivalent to 2.1Gb/s data 

sequence with "010101010...." Pattern) and 2.1Gbit/s 223 -l PRBS data sequence. The 

performance of the PLL is summarized in Table 3.2. 
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Table 3.2 Summary of the experimental results 

Power supply 2.3V 

Locking range 1.88GHz-2.1GHz 

Tracking range 1.65GHz-2.3GHz 

Power consumption Total 54mA, PLL core -10mA* 

Technology TSMC 0.25nm CMOS 

Active area 400/v/h x 290/zm 

Package LLC52 

* Due to the limitation of the design, the current for PLL core can not be directly measured. 

It is estimated by using the current ratio between PLL core and the output buffer in the 

simulation. 

Some waveform captures are shown in Figure 3.37. The upper waveform is the input 

clock (the frequency shown is the half of the data rate). The lower waveform is the divided 

output clock. The three captures show the tracking properties of the PLL at input data rate at 

l.SGbit/s, 2Gbit/s and 2.2Gbit/s. The frequency of the divided clock tracks the input 

successfully. 

3.9 Conclusion 

A new linear non-sequential PD structure that is capable of operating at very high 

speeds was introduced. Using this PD, a 2.3V CMOS PLL for data and clock recovery was 

implemented. Experimental results show that it can operate at the 2.1Gbit/s data rate in 

TSMC 0.25pm CMOS processes. It successfully verifies the functionality and the speed 

capability of the PLL. It is among the fasted full-rate PDs for data recovery. 
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Secondly, a half-rate PD based on the idea of this PD may be viable. It would further 

improve the speed of the PD (up to two times higher). 
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CHAPTER 4 

TRANSIENT BIT ERROR RATE ANALYSIS OF DATA RECOVERY 

SYSTEMS USING JITTER MODELS 

4.1 Introduction 

We introduced a high speed PLL design for data recovery in chapter 3. In this 

chapter, we will present a method of evaluating the performance of the data recovery system 

by analyzing the transient bit error rate (BER) of the recovered data. 

The performance of the data recovery system is usually characterized by the BER of 

the recovered data. The BER of these links is dominantly determined by the characteristics of 

the data recovery system. High-speed low-power phase-locked loops are an integral part of 

data/clock recovery system. Although the performance of the PLL after it is in lock is 

reasonably well understood, its performance during lock acquisition has received minimal 

attention in the literature but is also of concern since this determines how long it will take for 

a PLL to attain an acceptable BER. 

The BER is determined by the jitter of the incoming data and the jitter performance of 

the PLL. In this chapter, we develop the relationship between the BER of the recovered data 

and the jitter of the incoming data both when the PLL is in lock and when the PLL is 

acquiring lock. 

Research on PLLs has been ongoing for decades and the term "lock" is widely used 

to indicate the PLL is in a special "steady state" mode of operation. But until now, a rigorous 

definition of "lock" has not been presented in the literature. It is generally assumed that a 

PLL is in lock when the output of the loop filter stabilizes and that one just "knows" when 

the PLL is in lock but, in reality, the control voltage for the VCO comes from a loop filter 

that generally has an infinite impulse response and, as such, only asymptotically approaches 
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a steady-state value or a steady-state average value. In this work, a practical criterion for 

determining if the PLL is in "lock" will be developed and this "lock" condition will be 

contingent upon establishing a given BER level of performance. 

To determine if a data recovery system is working correctly, we usually establish a 

maximum acceptable value for the BER, denoted in this work as Bacc. If we assume that the 

frequency of the incoming data does not change for time t> tQ, then if the BER of the 

recovered data satisfies the relationship BER < Bacc for time all t > t{, where r, > ta, then 

we say the PLL is in "lock" for t>t{. If /, is the minimum value of t for which the BER 

s a t i s f i e s  t h e  i n e q u a l i t y  B E R ( t l  )  <  B a c c ,  t h e n  w e  s a y  t h e  P L L  a c q u i r e s  l o c k  a t  t i m e  t l .  

In the following sections, we will analysis the BER of the recovered data based on the 

acquisition behavior of the PLL and the jitter model. 

4.2 Acquisition Behavior of the Phase-Locked Loop 

The acquisition behavior of the PLL can be studied most conveniently by considering 

the response of the loop to an initial phase error or a frequency error. Consider the common 

second-order PLL shown in Figure 4.1. 

phase loop 
detector filter 

VCO 

Kn/s 

F(s) 

Figure 4.1 Model for 2nd order phase-locked loop 
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Assume that the phase detector is linear. The transfer function of the second-order 

PLL is given by [4.1] [4.2] [4.3] 

The phase error transfer function is given by 

= s+ KaK MA <4'2> 

where K d  is the phase detector gain, K a  is the VCO gain and the F(s)  is the transfer 

function of the loop filter. 

The acquisition process of the PLL is classified into two distinct types, lock-in 

process and pull-in process. 

Assuming initially the PLL is in lock, the lock-in process is the re-acquisition process 

during which the output of the phase detector will only sweep once within its output range 

before the PLL returns to lock. Pull-in is the re-acquisition process during which the output 

of the phase detector will sweep within its output range more than one time before the PLL 

returns to lock. The pull-in process is more complicated and takes much longer time than the 

lock-in process and it is a highly nonlinear process. The typical control voltage response of 

the lock-in process and the pull-in process are illustrated in Figure 4.2. 

4.3 Jitter and its Model 

Jitter is the deviation from the ideal timing of an event. It is composed of both 

deterministic and random (Gaussian) components. [4.4] 

The deterministic jitter is the jitter with a non-Gaussian probability density function. 

It is always bounded in amplitude and has specific causes. Deterministic jitter is 

characterized by its bounded, peak-to-peak value. 
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Figure 4.2 Acquisition processes of (a) lock-in process; (b) pull-in process 

Random jitter is the jitter that is characterized by a Gaussian distribution. It is defined 

to be the peak-to-peak value which is given to be 14 times the standard deviation of the 

Gaussian distribution for a BER of 10~12. 

In the following, we will define the jitter models which will generate plots of eye 

closure vs. BER with various amount of random and deterministic jitter components. 

The error probability is defined as 

(4.3) 
vy 

where e r f (  ) is the error function which is given by 

e r f {x )  =  £  e~ r d t  (4.4) 

and Q, the average signal to noise ratio, is defined as 
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e-E (4.5) 

where V is the peak to peak signal amplitude and a is the root-mean-square noise. To arrive 

at this expression, it is assumed that the noise has a Gaussian probability density function 

with zero mean. 

4.3.1 Effects of Random Jitter 

Let QTX be the ratio of the eye opening to the amount of random jitter at an eye 

crossing, i.e. 

ôr1(r0,f,o-)=lfr°^ 
V " V 

To include the effect of sampling time, QT{ can be rewritten as 

<27,(r0,r,<7) = lf^til 
2l a 

(4.6) 

(4.7) 

where t is a dummy variable that defines the offset of the sampling instant from the eye 

crossing. When t=0, a worst-case BER is obtained, i.e. t=0 defines the position of the eye 

crossing. 

If the decision threshold is made at the eye crossing, then the eye opening is 

e s s e n t i a l l y ,  z e r o ,  i . e .  T 0  = 0 .  

Following the analysis in the signal domain, the BER in the time domain is defined as 
( r Grt(r0,/,o-rx 

pr,(r0,r,<r)=! l l - e r f  
V2 

(4.8) 

In order to study the eye closure, let us define the position of the second eye crossing. 

The second eye crossing would have similar characteristics as the first one and occurs a bit 

period away, i.e., 

Q7, (r0, r, <r) = QTX (r0, r - |r|, ar) (4.9) 

Similarly, 
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pr2(r0,j,<r) = l  
f  f  

1 -erf  
\ V 

QT2(Ta,i,a)Vs 

V2 

The BER now is given by 

P{T0 ,;,<%) = (r0 ,t,o)+ pt2 (t0 , f, <r) 

(4.10) 

(4.11) 

4.3.2 Effects of Deterministic Jitter 

Deterministic jitter (DJ) is caused by varying patterns or duty cycle creating 

predominant spectral components or DC baseline drift in the transmitted signal. DJ reduces 

the eye width and can be assumed to have larger amplitude than random jitter. To account for 

DJ, both QTi and QTz can be written as 

QTx{rQ,t,(T,Dj)= (4.12) 
2 (J 

Similarly, 

Ô72(r0,/,o-,D/) = (2rl(r0,r-|rL<r,D/) (4.13) 

The BER is now 

<t. DJ ) = 
2 

pr,(r0,f, a, DJ )= i f  1  -

and 

(4.14) 

(4.15) 

The total probability over the window of interest is therefore 
P(T0 ,t,<r,DJ) = PT{ (r0 ,t,cr,Dj)+ PT2 (T0, /, cr, DJ ) (4.16) 

4.3.3 Total Jitter Model 

A complete jitter model due to the total jitter can be obtained by combining the 

random jitter model and the deterministic jitter model together. 

BER(RJ, DJ) = P(T0,t, cr)+P(T0,t, er, DJ) (4.17) 
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BER model with «GHt 
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RJ=15ps. 0U=20ps 
RJ=25ps. DJ=50ps 
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reltthn olhet from the #y* crossing (ps) 

Figure 4.4 BER with different RJ and DJ combinations 

The effects of different combination of the random jitter and deterministic jitter to 

BER are shown in Figure 4.4. 

4.4 BER Analysis of the Data Recovery System 

Once we have obtained the jitter models and the acquisition behavior of the PLL. We 

can use them to calculate the transient BER during acquisition or even at anytime. 

As before, we can get an optimal BER when the clock samples the data at the middle 

between the two eye crossings. This is also the principle for the decision-making circuits. In 

the decision-making circuits, the incoming data should be re-sampled by the recovered clock 

with sampling edges at the middle of a bit period. 

We assume that initially the PLL is in lock with reference signal with frequency coa. 

At t=0, there is a frequency step A to applied to the reference signal. After the step, the 

angular frequency of the reference becomes <yL(f) = <y0 -tAaju(t) ; the phase of the reference 

signal (pv{t) is the integral over the frequency variation A CO. So that ^(f) = A AT. 

From the transient response of the VCO, specifically from the output COz{t), we can 

get the phase of the VCO output 0r{t) which is given by 
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1. Phase detector is a sinusoid phase detector, 

U d  = K Q  sin(A0), K 0 = 3  (4.20) 

2. Loop filter is a passive loop filter 

3. Initial PLL locking frequency = 2GHz, frequency step=20MHz 

4. VCO gain K0 = 3.5 x 10* radians / V 

Using above parameters for the PLL and combining with the jitter model with 

deterministic jitter=20pS and random jitter=15pS, the following simulation results were 

obtained. 

Figure 4.6(a) shows the transient response of the phase detector and loop filter 

outputs. The output of the phase detector swept the output range many times until it merged 

with the output of the loop filter. It's a pull-in process because of the large frequency step. 

Figure 4.6(b) shows the corresponding BER during the acquisition. At the early 

stages of the acquisition, the BER changes dramatically with a large range. During this time, 

the BER is unacceptably large. When the PLL approaches lock, the BER drops steeply. 

Figure 4.6(c) shows the magnified BER response. From this figure, we see that after about 

t=6.242 pS, the BER dropped below IxlO"12 . 

This example does not include jitter of the PLL because the transient analysis of the 

acquisition process is ideal. However, it can provide an easy and quick method to 

approximately evaluate a data recovery system. 

This example shows an application of this method on early (behavioral level design) 

design stage. It is also applicable for after-design verification. When the data recovery 

system design is completed, combining the transient simulation results and the jitter models, 

we can get results that are very close to the real world. 
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Figure 4.6 Simulated results of (a) transient response of the PLL; 

(b) transient BER; (c) magnified transient BER 

4.6 Conclusion 

For a data recovery system, the BER can be calculated by using the jitter model and 

the transient response of the PLL. This makes it possible to predict when the data recovery 

system will enter lock. 
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CHAPTERS 

A HIGH PRECISION HIGHLY LINEAR VARIABLE GAIN 

AMPLIFIER 

5.1 Background 

Variable gain amplifier (VGA) finds a very wide range of applications where 

Automatic Gain Control (AGC) is needed, such as hearing aids, imaging and wireless 

communications. In such applications, the signal strength varies over a large range. VGA is 

used for either controlling the transmission signal power or adjusting the received signal 

amplitude. In order to let system work under such situations, a feedback loop is usually 

required to implement AGC. VGA plays a key part in this loop. Usually a highly linear VGA 

is needed to maintain good system linearity. The linearity of the VGA is almost entirely 

determined by its amplifier design. A highly linear amplifier design is crucial for the linearity 

of the VGA. 

There are two types of VGAs. One is a discrete gain-step type with a digital control 

signal, and the other is a continuously variable gain type which is controlled by an analog 

gain-control signal. 

Sophisticated analog design usually realized using expensive BiCMOS, SiGe 

processes. Large-scale integration of a mixed-signal system or SoC in deep submicron 

process can only be achieved when analog circuits are also implemented with ultra-short 

channel devices in CMOS. This project is trying to implement a digitally controlled high 

precision highly-linear CMOS variable gain amplifier with the performance that was only 

achievable in more expensive processes before. The projected process is 0.25pm standard 

CMOS process. The power supply voltage is 3.3 V. 

Some design challenges and specifications in this design are: 
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1. Precise gain step of 6.02dB 

2. Gain range: -6dB - +36dB 

3. Maintain enough bandwidth (>250MHz) 

4. The third harmonic distortion for input signal at 160MHz should be no worse than 

-55dB@Vapp=lV. 

5. Less than 2.5nV /-JHz input-referred thermal noise at maximum gain 

6. Better than 12dB noise figure at the maximum gain assuming 200Q source 

impedance. 

7. Fixed differential input impedance of 200£2 and differential output impedance of 

600ti. 

The toughest specification to achieve is the linearity requirement. Our linearity 

performance target in simulation is -60dB @ Vopp = IV which is higher than the requirement. 

This is because the measurement results of linearity usually would be worse than simulation 

because of the mismatch and the process variation. The linearity performance of the VGA is 

almost entirely determined by the linearity performance of the amplifier section of the VGA. 

5.2 Structure of the VGA 

The first natural choice for designing highly linear amplifier is negative feedback 

amplifier configuration. Extensive investigation has been done to evaluate the linearity and 

bandwidth performance of the negative feedback amplifier configurations. The idea is to 

build a high open loop DC gain amplifier and connect it as feedback configurations. The 

benefits are precise gain control and better linearity. The inherent problem would be that the 

limited speed in CMOS compared to BiCMOS or bipolar technologies may make this 

approach not viable. After extensive investigation, unfortunately, the projected CMOS 

process doesn't have the luxury of extra bandwidth to play with negative feedback. So our 

focus shifted to the low gain high bandwidth open loop amplifier structure. 
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Because of the tight specification on gain step accuracy, traditional transconductance 

adjusting approach can not meet the requirement even with the help of tuning circuits. The 

final structure of the VGA as shown in Figure 5.1 is an R-2R ladder plus fixed-gain amplifier 

structure. 

The inputs are AC coupled to an R-2R ladder which is controlled by digital control 

inputs (MSB, ISB and LSB) to attenuate the input. The output from the ladder is then feed 

into the fixed-gain open loop amplifier. If the resistors in R-2R ladder can be well laid out to 

minimize the mismatch, the gain step of the VGA is totally determined by the ladder which 

can be very accurate. 

IN+ 

IN-\\ 

VGA 

->WV 

R-2R 

—WV 

z 
AMP 

t± 
Decoder and Biasing 

Rload=1K 

LSB ISB MSB 

Figure 5.1 Structure of the VGA 

We chose to use a two-stage open loop configuration for this amplifier design which 

is shown in Figure 5.2. The first stage is a transconductance stage that converts the input 

small signal voltage to current. The second stage is a simple current mirror which drives a 

resistive load of 300 ohms. This approach can also meet the requirement of 600 ohms 

differential output impedance easily. The total gain of this structure is given by 

A  =  g m K R L  (5.1) 

where gm is the transconductance of the first stage, K is the mirror gain, RL is the 

load resistance. 
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+ 1 I 

H 
Vin-

'L 

Figure 5.2 Two stage amplifier configuration 

Several issues need to be solved in the open loop situation. First, the gain of the 

amplifier needs to be stabilized within a certain range (±3dB). Though the gain requirements 

for the amplifier is not very tight, it should not vary too much over process variations and 

temperatures, which is usually the case if the gain of the amplifier relies on the 

transconductance of the devices. Secondly, the amplifier needs to be linearized because the 

MOS transistors are inherently not quite linear especially in modern deep sub-micron process 

that is prone to short-channel effect and deviates from the classic square-law equation. 

5.3 Linearization Schemes Review 

In this section, we will review several widely-used linearization schemes for the 

transconductor design. In the following analysis we will consider perfectly quadratic i—v 

characteristic for the MOS transistors in the saturation region and the channel length 

modulation effect will be neglected for simplicity. First, let us study the most basic structure -

simple differential pair. It is shown in Figure 5.3(a). Assuming vf = vm> - vin_ and ia = zt -z2. 

It has a transfer characteristic given by 

Even without considering channel length modulation, the i — v  characteristic is not 

linear. A better linearity can be get for a larger excess bias Vcs—VT. In our simulation, we 

were able to get -51dB third harmonic distortion with Vopp — IV. 

(5.2) 
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5.3.1 Source Degeneration Scheme 

One of the simplest topologies to linearize the transfer characteristic of the MOS 

transconductor is the one with source degeneration using resistors and depicted in Figure 

5.3(b). The disadvantage of this configuration is the large resistor value needed to achieve a 

wide linear input range. By replacing the degeneration resistors with two MOS transistors 

operating in the triode region, the circuit in Figure 5.3(c) is obtained [5.1] [5.2] [5.3] [5.4] 

[5.5]. Considering perfectly matched transistors, and neglecting the body and channel length 

modulation effects, the transfer characteristic of this transconductor is given by 

V.J1- (5.3) 
a 

= 

a-l Aft.2 

where <2 = 1 + A 
4A 

(5.4) 

& 3) 

II V 112 
IN+ 

'Htin 

12 

M3 

M4 

(a) 
Figure 5.3 

(b) (c) 
(a) simple differential pair; (b) source degeneration linearization; (c) source 

degeneration using two triode transistors 

Usually, the nonlinear term under the square root can be made much smaller than 

unity and improved linearity and larger input dynamic range can be obtained. The circuit has 

bandwidth and noise performances comparable to the simple differential pair. 

This linearization scheme was proposed more than 10 years ago. To test its 

performance at sub-micron CMOS process, we built the circuits in Figure 5.3(c) and were 

able to get -58dB third harmonic distortion at Vopp = IV. Still, it is not good enough for us. 
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5.3.2 Constant Drain-Source Voltage Scheme 

Another linearization scheme is using "constant drain-source voltages". Recall the 

model for transistors in triode region is given by 

I D~ f*Ca 
f w '  (5.5) 

We see here that if VDS is kept constant, the drain current is linear with respect to 

gate-source voltage. Several implementations based on constant drain-source voltage were 

presented before [5.9] [5.10]. One possible implementation is shown in Figure 5.4. 

il 
<$> 

Vc 

D 

<$> 

Ms 

12 

IN+_ 

T|Kl 
_yc 

h 
IN-

Figure 5.4 Constant drain-source voltage linearization scheme 

Ml and M2 are placed in the triode region and their drain-source voltages are set 

equal to Vc through the use of M3, M4 and two extra amplifiers. The transconductance of 

this structure is given by 
/i ir\ 

8 m =MC* 
W 

' DS (5.6) 

Note that the transconductance is proportional to the drain-source voltage. A major 

disadvantage of this structure is the limited bandwidth. 

5.3.3 Constant Sum of Gate-Source Voltage Scheme 

Similar strategy named "constant sum of gate-source voltage" is also widely used 

[5.11] [5.12]. The difference is that in this strategy, transistors are working in saturation 
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region in stead of triode region. Assuming two transistors are operating in saturation region 

as shown in Figure 5.5(a), the output differential current is given by 

( / , - / , )  =  0(van + Vcs2 -2VtX ĝsi -V<b,) (5.7) 

We see that the output differential current is linear if the sum of the two gate-source 

voltages remains constant. One important point is that, although the differential current is 

linear, the individual drain currents are not linear. Thus, if the subtraction between currents 

has some error, some distortion will occur even if perfect square-law devices are obtainable. 

There were a variety of ways to make the sum of the gate-source voltages remain 

constant when applying an input signal. One of them, as depicted in Figure 5.5(b), is to use 

differential pair with floating voltage sources. Writing a voltage equation around the loop, we 

have 

-(V, + V, )+ Vas, -(V, + V, ) = 0 (5.8) 

thus, Vcsi+Vcs;=2(f,+V,) (5.9) 

As a result, this circuit maintains a constant sum of gate-source voltages even if the 

applied differential signal is not balanced. Also, we can find the differential output current is 

given by 

/ , - / 2 = 4 ^  ( 5 . 1 0 )  

A simple way to realize the floating voltage sources of Figure 5.5(b) is to use two 

source followers, as shown in Figure 5.5(c) [5.12]. The transistors labeled nK are n times 

larger than the other two transistors. They act as source followers when n is large. The 

transconductance of this structure is given by 

g„ =^4Vkt7 (5.11) 

A major disadvantage of this structure is a large amount of quiescent current pass 

through two source followers. To test its performance at sub-micron CMOS process, we built 

this transconductor and were able to get -57dB third harmonic distortion at Vopp = IV. 
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Figure 5.5 Constant sum of gate-source voltage linearization scheme 

5.3.4 Bias-offset Cross-Coupled Differential Pairs 

Another approach to realize a transconductor with active transistors is to use two 

cross-coupled differential pairs where input into one pair is intentionally voltage offset [5.13] 

[5.14] [5.15]. One example of this approach is shown in Figure 5.6. MOS transistors M1-M4 

and M5-M8 have the same dimensions and operate in saturation region. Because of the same 

current flow through M5 and M7 (M6 and M8), their gate-source voltages will be the same. 

Thus the inputs will be voltage-shifted to be applied to M3 and M4 and this voltage shift can 

be  cont ro l led  by  b ias ing  vol tage  V B  .  

Applying square law of the MOS transistor, we have 

A = An +td*=0(vr-VTf -V,-VTf (5.12) 

A = A2 + Aj = f l y*  -V T f+ P(vr ~V,~V T f  (5.13) 

Thus, the differential output current 

A = ( A - A )  =  2 £ V , ( V „ - V „ )  ( 5 . 1 4 )  

Which yields 

(5.15) 

We see that the differential current is linear with respect to differential input voltage 

as expected. 

There are still some other schemes proposed to linearize the transconductor [5.16] 

[5.17] [5.18] whose details will not be discussed here. 
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M6 M5 
Vn 

M4 

M8 M7 

Bias-offset cross-coupled differential pairs linearization scheme 

These linearization schemes can bring us moderate improvements. The ideas behind 

them were all based on the square-law model of the MOS devices. Compared to long-channel 

processes at the time when they were published, the improvements that can be obtained from 

those schemes in short-channel processes are limited. This is due to the large deviation from 

the classic square-law model for the short-channel devices. Because of the short-channel 

effects, it's not a good idea to use active devices to linearize the transconductor in order to 

achieve high linearity. Discussed in next section is a linearization scheme that doesn't depend 

on the MOS devices. 

5.4 Open Loop Amplifier with Linearized Transconductor 

For all the transconductors that we discussed in the previous section, none of them 

was accepted for our amplifier design. Some structure's linearity performances are not good 

enough for our application. Others have the problem of gain stability because their 

transconductance depend on process parameters. 

As mentioned before, our amplifier is a two stage structure. The first stage is a 

linearized transconductance stage. The second stage is a simple current mirror. The linearized 
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transconductor structure we used is similar to those used in [5.6] [5.7] [5.8]. In [5.8], authors 

used a "floating linear resistor" formed by triode region transistors to linearize the 

transconductor. Because the resistance value in our design is small, we replaced the floating 

linear resistor with a real resistor in order to get better linearity. Its structure is shown in 

Figure 5.7. 

6mA 

6mA 

OUT+ 76/0.24 
m=4 

76/0.24 
m=4 

ai IR 
54/0.24 

M4 M3 
54/0.24 

M6 
54/0.24 

m=4 
54/0.24 

m=4 

Figure 5.7 Linearized amplifier used in VGA 

The transconductance stage includes Ml, M2, R and the current sources II and 12, 

while the current mirror stage is consist of M3-M6 to drive resistive loads. 

Current II is forced flew through Ml and M2 at any time that keeps the constant Vcs 

for both Ml and M2. Thus the p-channel devices will serve as voltage followers buffering the 

input small signal across the resistor R. The small-signal current will then flow through M3 

and M4 and be mirrored to the output to drive the loads Rl. Theoretically, the transconductor 

stage is very linear and it doesn't rely on the square law of the transistors. 

This structure also takes care of the gain stability problem for the open loop 

amplifiers. The transconductance of the first stage is simply gm =L/R. The gain of the 

amplifier is given by: 

A=Rl"RxM (5.16) 

where M is the mirror gain, Rx is the external load. 
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The gain of the amplifier is determined by the mirror gain and the ratio of the two 

resistances. This property greatly enhances the gain stability. Actually, the gain of the 

amplifier will change because the sheet resistance of the integrated resistors varies while the 

external resistive load keeps constant. Simulation results considering this effect will be given 

later in this chapter which shows an acceptable performance. 

Because the output impedance of the amplifier is fixed in order to interface with the 

loads, the only two design variables that we can control are R and M. A combination of them 

must be carefully chosen to ensure the low distortion and ease the realization of the resistors. 

To get the best linearity out of the current mirror, the output common mode voltage 

was chosen to be around 1.1V. Because the output impedance of our design is fixed, the 

quiescent current level in the output transistor would be limited in a small range. This limited 

quiescent current in the output stage can't sustain large current swing while still maintain the 

required linearity. Two current sources were added to the output devices to increase the 

quiescent current in M5 and M6. These additional currents provide an additional 4dB better 

linearity. 

The input transistors were chosen to use PMOS devices. This is based on several 

considerations. First, its body can be connected to the source in the projected N-WELL 

CMOS process. It eliminates the body effect and improves the linearity. Secondly, PMOS 

devices are less noisy than NMOS devices. Finally, to complement the design, NMOS current 

mirrors can be used that have better frequency response than PMOS current mirrors with 

NMOS input stage. 

Current mirrors contribute part of the overall nonlinearity. The intuitive thoughts to 

improve the linearity of the current mirrors were to use cascode current mirrors. Hope the 

additional cascoded devices can shield the drains of M5 and M6 from large voltage swings. 

But several investigations revealed that this approach has little to do with the linearity of the 
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amplifier. We have two observations about the linearity performance that apply for both 

simple and cascode current mirror configurations under small-feature size processes and 

BSIM3 models: 

(1) Couplings from the output (drains of M5 and M6) back to the transconductance stage 

(through gates of M3 and M4) have a major impact on the linearity of the gm stage at 

high frequencies. At low frequencies, the linearity of the signal current of the gm 

stage is keeping constant and very high. It starts to get worse when the input 

frequencies are higher than 100MHz. 

(2) Small drain voltage swings at the output devices (M5 and M6) do not necessary give a 

better linearity compared to larger swings. The linearity is more depend on the 

harmonies between two drain voltages, i.e. it would be more linear to have a constant 

large difference between two drain voltages than a variable small difference between 

them. 

The speed of this amplifier is moderate, the dominate pole appears at the gates of M4 

and M6. In order to meet the bandwidth requirement, about 40mA current is pumped into the 

amplifier. 

5.5 R-2R ladder 

The R-2R ladder is used in series with the amplifier in order to have a very accurate 

gain step control. The fully-differential R-2R ladder structure is shown in Figure 5.8. All the 

switches are implemented by NMOS transistors. They are controlled by the output of the 

digital decoder. According to the digital control codes MSB, ISB and LSB, one tap of the 

ladder will be selected. The attenuation ratios of the output with respect to input are shown in 

the figure. The common mode voltage of the output is set to 1/3 of the supply voltage. It is 

also the input common mode voltage for the amplifier. Each resistor is 50 ohm. 
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Figure 5.8 Structure of the R-2R ladder 

OUT-

5.6 Digital Circuits 

Digital control of the gain of VGA is accomplished by a 3-bit parallel gain control 

input, a data valid signal to latch the data. If the data is not latched, the VGA continuously 

updates its gain setting. 

The digital circuits shown in Figure 5.9 are basically a 3-to-8 decoder with latches 

and buffers. The buffers, inverters, AND gates and the latches are all implemented in 

standard digital circuits using thick gate-oxide transistors. 

MSB 

latches 

buffers 

LATCH 

Figure 5.9 Schematic of the decoder 
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5.7 Biasing Circuits 

The biasing circuits provide bias for amplifier, R-2R ladder. It is shown in Figure 

5.10. M3-M6 and resistor R form a constant gm, supply insensitive bias circuits. Two outputs 

BiasP and BiasP provide the biasing voltages for N-type and P-type current sources. This 

circuit has two stable quiescent states — normal working state and the state with all the 

currents are zero and all the transistors are off. M2 is used as start-up circuit to prevent circuit 

in zero-current working status. When the currents are zero, M2 forces M4 to conduct current 

and increase the gate voltage of the M3. Thus bring the circuits out of the zero-current state. 

When circuits work at normal state, M2 is off because of the higher source voltage. 

M2, M7 and the inverter are used for power down function. When PowerDown input 

signal is high, BiasN is brought down and BiasP is brought up so that the amplifier will not 

function and the current consumption will reduced significantly. 

BiasN 

PowerDown 

Vcomm 
t—• 

Figure 5.10 Biasing circuits for the VGA 



www.manaraa.com

100 

5.8 Chip Layout 

The layout of the amplifier is shown in Figure 5.11(a). Inter-digitizing and symmetric 

layout techniques were used for better matching performance. Because of the large current, 

60% of the area was consumed by metal interconnections. 

The layout of the R-2R ladder is shown in Figure 5.11(b). It is a somewhat straight­

forward layout. The resistors were laid out using single-unit resistor cells, vertically 

symmetric. The NMOS switches were surrounded by the resisters and between each ladder 

stages. 

(b) 
Figure 5.11 Layout of (a) amplifier; (b) R-2R ladder 

5.9 Simulation Results 

This project was designed in a standard CMOS 0.25pm process. It was simulated 

using HSPICE simulator and BSIM3, level 49 models with package and power supply 

models at all-transistor level. The accurate simulation option was switched ON in order to get 

good approximation for the expected measurement results. 

The AC response of the amplifier for different gain settings at room temperature and 

normal device models is shown in Figure 5.12. The gain step is almost exactly 6.02dB 
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because there is no mismatch in schematic simulation. The 3dB bandwidth of the amplifier is 

about 300MHz. Some margin on bandwidth in our design would bring more confidence in 

the future testing. The AC performance under different process corners and different supply 

voltages are also summarized in Table 5.1 

I 
'0 

Figure 5.12 AC response of the VGA for different gain settings 

Table 5.1 VGA AC performance 

3.3V 3V 3.6V 

Gain 3dB BW Gain 3dB BW Gain 3dB BW 

Normal 34.8dB 294MHz 34.5dB 293MHz 35.1dB 297MHz 

Fast 34.7dB 321MHz 34.4dB 318MHz 34.8dB 325MHz 

Slow 34.8dB 274MHz 34.2dB 274MHz 35.2dB 275MHz 

The simulation results for the linearity of the amplifier under different process corners 

are shown in Table 5.2. This measurement was done at the input signal frequency f=l60MHz. 

Some margin was left to meet the requirements for the linearity because the transistor 

mismatch was not taken into account. It's not surprising to see the worse real measurement 

results. 
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Table 5.2 Linearity @Vo_pp=lV (HD3), room temperature 

3.3V 3V 3.6V 

Linearity current Linearity current Linearity current 

Normal -62.8dB 46.3mA -59.7dB 45mA -62.9dB 47.4mA 

Fast -62.6dB 42.8mA -61dB 41.6mA -62.2dB 44mA 

Slow -61.8dB 50mA -55dB 48.7mA 63.5dB 51.2mA 

According to the data sheet of the projected process, its sheet resistance for poly 

resistor varies about ±20%. Shown in Figure 5.13 and Table 5.3 are the gain response and the 

linearity performance considering the resistance variation, i.e. all the integrated resistors vary 

their resistance while the external load keeps constant. The gain variation is controlled within 

±ldB and the linearity also meets the requirements. 

Table 5.3. Effects of the sheet resistance variation 

Linearity Gain 

Rmax -62.3dB 35dB 

Rmin -61.6dB 34.4dB 

AC Response 

r; vor-"1.0&3,*;dB20(W(,ynet019")) •: vor-'M.::"*-.. V .  - •  • : •  • :  v a r * " 9 3 3 . 3 m '  U67'%dB20(VF("/n«t019")) *: vQr*"r%d920(VF('Yn«W19~)) iJJ.Sm^dBMCVFCVneUîlé")) 

s 

IK 

Figure 5.13 Gain response considering resistance variations 
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The simulated input equivalent noise for the amplifier is l.44nV/-fïïz at maximum 

gain. The noise performance for all the gain settings is depicted in Figure 5.14. Those values 

are the average value over the frequency range of 100MHz to 500MHz which covers the 

entire frequency range of our interest. The noise figures for all the gain settings assuming 200 

ohms source impedance is shown in Figure 5.15. 

Input-referred noise 

34.849 2S.S4B 22.MB 16. SUB lOJdB 4.748 -l.ldB 7.3dB 

Gain Settingi 

Figure 5.14 Simulated noise performance of the VGA 

Melee Figure 
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Sain Sittings 

Figure 5.15 Simulated noise figure of the VGA 
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The temperature effect was also simulated and is shown in Table 5.4. The amplifier 

design keeps the acceptable performance on linearity and AC characteristics. 

Table 5.4 Temperature effects on amplifier design 

Linearity Gain BW 

-40C -64dB 35.9dB 303MHz 

85C -60.8dB 33.7dB 297MHz 

5.10 Conclusion 

Dedicated analog function can also be realized in deep sub-micron CMOS process. It 

not only provides acceptable performance, but also cost effective. In this work, we 

demonstrated the design of a CMOS VGA with precise gain step and high linearity. An open 

loop linearized amplifier was used in this VGA to meet the requirements of bandwidth and 

linearity at the same time. This amplifier structure can also be used as a low distortion 

building block for very wide applications. 
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CHAPTER 6 

EFFECTS OF OPEN-LOOP NONLINEARITY ON LINEARITY OF 

FEEDBACK AMPLIFIERS 

We described a highly linear amplifier design in Chapter 5. In this chapter, we will 

present a quantitative analysis of how the negative feedback would impact on the 

nonlinearity of the feedback amplifier with respect to the open loop amplifier nonlinearities 

(OLN). It will give a better understanding of the relationship between negative feedback and 

the linearity. 

6.1 Introduction 

Nonlinearity is a major nonideality of an amplifier circuit. It can be depicted as a 

nonlinear input/output characteristic [6.1] as shown in Figure 6.1. Usually when the input 

signal is small, the output has a reasonable linear relationship to the input. But with an 

increase of the input level, the output typically exhibits an increase in nonlinearity as 

depicted in the figure. 

actual 

output 

x 
ideal output\ 

x 

Figure 6.1 Nonlinearity in the amplifier 
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The nonlinearity of a circuit can also be considered as the "variation" of the slope 

(gain) in the input/output characteristics as a function of operating point. It means that a 

given incremental change at the input results in different incremental changes at the output 

depending on the quiescent input level. 

Several techniques have been used to improve linearity. One of the most widely used 

linearization strategies is using negative feedback and the linearization properties associated 

with negative feedback were one of the major reason feedback concepts were developed. It is 

well known that another property of feedback circuits is gain desensitization. Since 

nonlinearity can be viewed as a variation of the small-signal gain with the input level, 

negative feedback techniques also decrease the variation. 

While the general effect of negative feedback on linearity is well known, little 

research has been done from a quantitative viewpoint on how much nonlinearity can be 

reduced through feedback. The issue of what effect feedback will have on different order 

harmonics that contribute to the nonlinearity in the open loop amplifier has also not received 

much attention. The work presented in this chapter provides a quantitative assessment of how 

several nonlinearity properties of the open loop amplifier affect feedback amplifiers. 

6.2 Definition and Quantization of the Nonlinearity 

In order to make a meaningful and fair comparison of the non linearities under 

different circumstances, a rigorous definition of the nonlinearity that is suitable for both open 

loop and feedback structures are needed. 

Consider the open loop amplifier shown in Figure 6.2(a). The input-output 

relationship is Va- f(Vx), where it will be assumed that f(Vx) can be approximated by a 

desired first-order term and two undesired nonlinear terms. Thus, f{Vx) can be expressed as 

f(Vz) = -AVx+BV;+CV?, A,B,C>0,Vx>0 (6.1) 
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V; 
V. 

«VW 

(a) 
Figure 6.2 

(b) 
(a) open loop amplifier; (b) feedback amplifier 

This equation characterizes the open loop transfer characteristics of the amplifier in 

the fourth quadrant. Its characteristic in the second quadrant is similar as depicted in Figure 

6.1. This expression includes the second and the third harmonic distortions that generally 

dominate the nonlinearity in most open loop amplifier. 

Assume that the transfer characteristic of the open loop amplifier is as shown in 

Figure 6.1 with the solid line that shows an increase in nonlinearity as the input amplitude 

increases. When negative feedback is applied, the gain of the feedback amplifier is usually 

decreased and considerably less distortion is experienced. 

Ideally, the amplifier should have a linear input-output relationship of V a  = -AV X .  

This ideal linear relationship corresponds to the tangent line through the origin with a slope 

of k = f'(yx)|yi=0 =-A. This ideal output is shown in Figure 6.1 as the dotted line. 

For the feedback amplifier shown in Figure 6.2(b), it follows that: 

V,  ~  —L 
+/?2 /?, + /?2 

The feedback gain (amount of feedback applied) is usually defined as: 

p.  R '  

(6.2) 

(6.3) 
+/?2 

It follows that Vx=0Vo +(1-/3)Vm (6.4) 

Combining equation (6.4) with (6.1), we can obtain an exact input output relationship 

VQ =g(Vin) for the feedback amplifier. The closed-loop form of the expression for g{Vin) is 
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unwieldy, even in the presence of only second-order and third-order nonlinearities. This 

function can be solved with the help of the MATLAB symbolic toolbox. The solution is too 

complicated to show here because of the existence of the third order harmonics in the 

solution. 

Again, the ideal output of the feedback amplifier is defined as the tangent line that 

passes through the origin with a slope of 

The nonlinearity for any specific input is defined to be the deviation of the actual 

output from the ideal output at the given input. With this definition, each input to an 

amplifier has its own nonlinearity value. What we are interested here is to see the effect of 

feedback on linearity. We need to choose a reference point where nonlinearities are 

investigated. 

The nonliearity of an amplifier is usually closely associated with the output level. In 

what follows nonlinearity will be compared not at a certain input level but at a fixed ideal 

output level that is within our range of interest. We will base our comparisons on the output 

level rather than the input level because the gain of the feedback amplifier varies a lot with (3. 

The quantization of the nonlinearity is shown in Figure 6.3. For comparison purposes, the 

nonlinearies of the feedback amplifier will be compared at the ideal output level of 

Va =-1 which corresponds to the input level of V_l. The actual output for input V_t is Vao 

because of the nonlinearity. The nonlinearity, expressed in percentage, can be expressed as: 

It should be mentioned here that more simulations based on different reference points 

yield similar results and the same conclusions. 

(6.5) 

Nonlinearity(%) = 100 x (l+Vao ) (6.6) 
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Figure 6.3 Quantization of the nonlinearity 

6.3 Effects of the Feedback on Nonlinearity 

6.3.1 Effects of the Feedback Factor on CLN 

It is well known that with deeper negative feedback (larger /? ), more nonlinearity 

can be reduced. But no quantitative analysis has been done to resolve the relationship 

between feedback factor and the nonlinearity. The following investigation will look at how 

the amount of nonlinearity is related to the feedback factor /?. 

A typical feedback system is shown in Figure 6.4. The gain of the amplifier can be 

expressed as: 

A/ v[  1+ A0 
(6.7) 

Figure 6.4 Negative feedback system 
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For the original open loop amplifier shown in Figure 6.2(b), we assume DC gain 

A=1000; total nonlinearity at the ideal output level Va =-1 is OLN = 10% . Depending on 

the percentage combination of the second and the third harmonics that constitute the 

nonlinearity, the coefficients B andC in equation (6.1) can be determined accordingly. 

Special care must be take to guarantee the monotonically of the input-output 

relationship of the original amplifier within the range of our interest so that the solutions of 

the feedback amplifier equation are real. This was done by limiting the amount of the 

nonlinearity in the open loop amplifier in the calculations. 

The nonlinearities measured at the ideal output level of Va = -1 in several feedback 

amplifiers are shown in Figure 6.5. X axis shows the inversion of the feedback factor, i.e. 

1Z/9. Y axis shows the percentage of the nonlinearities in the feedback amplifier. Two cases 

are shown in Figure 6.5. One is that 100% of the OLN is due to the 2nd order harmonic, the 

other is that 100% of the OLN is due to the 3rd harmonic. 

In both cases, the amount of nonlinearity is linearly proportional to the inverse of the 

feedback factor. We conclude that the amount of Closed-Loop Nonlinearity (CLN) 

c l n = ~ + c  (6.8) 

where k and C are constants and only determined by open loop amplifier 

characteristics. 

In our calculations, the amount of OLN was fixed. Therefore, another conclusion can 

also be drawn, 

f z w = j + D  ( 6 - 9 )  

where m and D are constants and only determined by open loop amplifier 

characteristics. 
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Figure 6.5 Closed-loop nonlinearity vs. l/y# 

6.3.2 Effects of the Open Loop Gain on CLN 

Under that same assumption (except the open loop gain) as in previous section, the 

effects of open loop gain on nonlinearities in the feedback amplifier were investigated. As 

shown in Figure 6.6, open loop gain was swept from 1000 to 10000. Their corresponding 

CLN were calculated. The relationship between open loop gain and the amount of CLN is not 

linear, either for 2nd or 3rd order harmonics, or for different amount of OLN. 

. 1 r-—r—— — awmewom — hMnimou* 2r*w»s%cu« 

. 1 r-—r—— 

v \ 
XN 

• -

Figure 6.6 Closed-loop nonlinearity vs. open-loop gain 
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CLN drops dramatically when open loop gain start to increase. After open loop gain 

becomes larger than 3000-4000, the decrease of the CLN is much less. This property 

suggests that the effect of high open loop gain on reducing CLN is limited. 

6.3.3 Effects of the Amount of OLN on CLN 

Another interesting topic would be whether different amount of OLN would be 

suppressed linearly upon feedback. As shown in Figure 6.7, different amount of OLN were 

tested with feedback factor of 0.5 and open loop gain A=1000. For both 2nd and 3rd order 

harmonics, the suppressions of the nonlinearity through feedback were not linear. 

The increase of the CLN becomes faster with the increase of the OLN. This trend is 

more obvious for the 3rd harmonic. This property suggests the importance of limiting the 

OLN in design a low-distortion amplifier. 

6.3.4 Effects of Different Harmonics on CLN 

Modern integrated circuits design is often based on fully differential structure in order 

to eliminate even order harmonics. It would an interest to investigate if different order 

harmonic behaves differently in the feedback amplifier. 

Figure 6.7 Amount of closed-loop nonlinearity vs. amount of open loop nonlinearity 
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It is already shown in Figure 6.5 that for the second and the third order harmonics, the 

same amount of nonlinearity in open loop amplifier will result in different amount of 

nonlinearity in the feedback amplifier. The third order harmonic will result a higher amount 

of nonlinearity in the feedback amplifier. 

More investigations were done to see how different combination of the second and 

the third harmonics in open loop amplifiers would affect the nonlinearity in the feedback 

amplifier. As the surface plot shown in Figure 6.8, CLN were calculated with different 

percentages of 2nd and 3rd harmonics in the open loop amplifier. 

It is very clear that for any percentage combination of the second and the third order 

harmonics, the amount of CLN is still linearly proportional to the inverse of the feedback 

factor. For a certain feedback factor, the amount of the CLN changes linearly with the 

percentage of the 2nd and the 3rd harmonics. 

Relwiemhip bnwnn 0«nd!he nortfruirty practnMft far dWNttnt combinitien of 2nd #nd 3rd order hemonic* 

2nd ori«fhi«Bnic.nicwm» inttw tJ2 

Figure 6.8 Nonlinearity vs. 1/p vs. different percentages of the second and the third 
harmonics 



www.manaraa.com

116 

6.4 Conclusion 

This chapter presented an analysis of the nonlinearity in feedback amplifiers. A new 

way to quantize the amount of nonlinearity was proposed. Using this method, a general-

purpose negative feedback amplifier was analyzed for its nonlinearity under several different 

situations. We observed that the nonlinearity in the feedback amplifier is linearly 

proportional to 1/ and lower order harmonic nonlinearity will be reduced more through 

feedback. Results also show that the effect of high open loop gain on reducing nonlinearities 

through feedback is limited. 
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